Author
Listed:
- Ilaria Losa
- Andreas Corusa
Abstract
Platone (Platone Consortium, 2020) was a four-year Horizon 2020 funded European project that aimed at defining new approaches to increase the observability of renewable energy resources and loads to exploit their flexibility. It developed advanced management open-source platforms to unlock grid flexibility and to realize an open and non-discriminatory market, linking users, aggregators, and operators. These platforms were tested in three pilot projects in Italy (Platone Consortium, 2021), Greece (Platone Consortium, 2023) and Germany (Platone Consortium, 2021) and allow to integrate solutions like: Local Energy Communities, Virtual Power Plants (VPPs) supporting Distribution System Operators (DSOs), FlexibilityBased Reinforcement Planning, and Flexibility Provision by Distributed Resources. The results of pilot projects were complemented by an analysis of the Scalability and Replicability Analysis (SRA) potential of the most promising solutions tested in the demos in the European context (Platone consortium, 2023). The present paper expands the Platone project?s insights into a comprehensive methodology for evaluating the replicability potential of solutions developed in the 3 pilot projects in Extra European contexts, notably Canada. By integrating quantitative insights with empirical evidence from pilot projects across Italy, Greece, and Germany, the proposed approach highlights the critical interplay between technical innovation, regulatory adaptability, and stakeholder engagement. The analysis was performed with a qualitative approach. First, a literature review of the similar approaches developed by other European projects that allows to identify the technical, regulatory, and stakeholder acceptance issues that impact on the SRA potential of the Platone solutions. These elements were used to elaborate an ad hoc questionnaire that was distributed among the list of stakeholders of Canadian experts identified by the Northern Alberta Institute of Technology. The survey highlights key insights and recommendations for deploying innovative energy solutions in Canada, such as VPPs and Flexibility-based Reinforcement Planning. Challenges include technical hurdles, like the deployment of Advanced Metering Infrastructure, and regulatory barriers across Canadian regions affecting distributed energy resources (DER) participation and energy trading. To overcome these obstacles, strategies such as comprehensive cost-benefit analysis, strengthened data privacy, standardized practices, regulatory alignment, increased stakeholder awareness, and supportive government policies are essential. Addressing these challenges can pave the way for successful integration of these solutions into Canada?s energy framework, contributing to a sustainable and resilient energy system.
Suggested Citation
Ilaria Losa & Andreas Corusa, 2024.
"Methodology for evaluating the replicability of European energy solutions in global contexts,"
ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2024(2), pages 87-107.
Handle:
RePEc:fan:efeefe:v:html10.3280/efe2024-002005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
More about this item
JEL classification:
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
- O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
- O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
- O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:efeefe:v:html10.3280/efe2024-002005. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=10 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.