IDEAS home Printed from https://ideas.repec.org/a/eme/jpifpp/jpif-06-2023-0053.html
   My bibliography  Save this article

Real Estate Insights Unleashing the potential of ChatGPT in property valuation reports: the “Red Book” compliance Chain-of-thought (CoT) prompt engineering

Author

Listed:
  • Ka Shing Cheung

Abstract

Purpose - This viewpoint article explores the transformative capabilities of large language models (LLMs) like the Chat Generative Pre-training Transformer (ChatGPT) within the property valuation industry. It particularly accentuates the pivotal role of prompt engineering in facilitating valuation reporting and advocates for adopting the “Red Book” compliance Chain-of-thought (COT) prompt engineering as a gold standard for generating AI-facilitated valuation reports. Design/methodology/approach - The article offers a high-level examination of the application of LLMs in real estate research, highlighting the essential role of prompt engineering for future advancements in generative AI. It explores the collaborative dynamic between valuers and AI advancements, emphasising the importance of precise instructions and contextual cues in directing LLMs to generate accurate and reproducible valuation outcomes. Findings - Integrating LLMs into property valuation processes paves the way for efficiency improvements and task automation, such as generating reports and drafting contracts. AI-facilitated reports offer unprecedented transparency and elevate client experiences. The fusion of valuer expertise with prompt engineering ensures the reliability and interpretability of valuation reports. Practical implications - Delineating the types and versions of LLMs used in AI-generated valuation reports encourage the adoption of transparency best practices within the industry. Valuers, as expert prompt engineers, can harness the potential of AI to enhance efficiency, accuracy and transparency in the valuation process, delivering significant benefits to a broad array of stakeholders. Originality/value - The article elucidates the substantial impact of prompt engineering in leveraging LLMs within the property industry. It underscores the importance of valuers training their unique GPT models, enabling customisation and reproducibility of valuation outputs. The symbiotic relationship between valuers and LLMs is identified as a key driver shaping the future of property valuations.

Suggested Citation

  • Ka Shing Cheung, 2023. "Real Estate Insights Unleashing the potential of ChatGPT in property valuation reports: the “Red Book” compliance Chain-of-thought (CoT) prompt engineering," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 42(2), pages 200-206, July.
  • Handle: RePEc:eme:jpifpp:jpif-06-2023-0053
    DOI: 10.1108/JPIF-06-2023-0053
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JPIF-06-2023-0053/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JPIF-06-2023-0053/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JPIF-06-2023-0053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jpifpp:jpif-06-2023-0053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.