IDEAS home Printed from https://ideas.repec.org/a/eme/jmlcpp/jmlc-02-2020-0012.html
   My bibliography  Save this article

Discerning payment patterns in Bitcoin from ransomware attacks

Author

Listed:
  • Adam B. Turner
  • Stephen McCombie
  • Allon J. Uhlmann

Abstract

Purpose - The purpose of this paper is to investigate available forensic data on the Bitcoin blockchain to identify typical transaction patterns of ransomware attacks. Specifically, the authors explore how distinct these patterns are and their potential value for intelligence exploitation in support of countering ransomware attacks. Design/methodology/approach - The authors created an analytic framework – the Ransomware–Bitcoin Intelligence–Forensic Continuum framework – to search for transaction patterns in the blockchain records from actual ransomware attacks. Data of a number of different ransomware Bitcoin addresses was extracted to populate the framework, via the WalletExplorer.com programming interface. This data was then assembled in a representation of the target network for pattern analysis on the input (cash-in) and output (cash-out) side of the ransomware seed addresses. Different graph algorithms were applied to these networks. The results were compared to a “control” network derived from a Bitcoin charity. Findings - The findings show discernible patterns in the network relating to the input and output side of the ransomware graphs. However, these patterns are not easily distinguishable from those associated with the charity Bitcoin address on the input side. Nonetheless, the collection profile over time is more volatile than with the charity Bitcoin address. On the other hand, ransomware output patterns differ from those associated charity addresses, as the attacker cash-out tactics are quite different from the way charities mobilise their donations. We further argue that an application of graph machine learning provides a basis for future analysis and data refinement possibilities. Research limitations/implications - Limitations are evident in the sample size of data taken on ransomware campaigns and the “control” subject. Further analysis of additional ransomware campaigns and “control” subjects over time would help refine and validate the preliminary observations in this paper. Future research will also benefit from the application of more powerful computing resources and analytics platforms that scale with the amount of data being collected. Originality/value - This research contributes to the maturity of the field by analysing ransomware-Bitcoin behaviour using the Ransomware–Bitcoin Intelligence–Forensic Continuum. By combining several different techniques to discerning patterns of ransomware activity on the Bitcoin network, it provides insight into whether a ransomware attack is occurring and could be used to trigger alerts to seek additional evidence of attack, or could corroborate other information in the system.

Suggested Citation

  • Adam B. Turner & Stephen McCombie & Allon J. Uhlmann, 2020. "Discerning payment patterns in Bitcoin from ransomware attacks," Journal of Money Laundering Control, Emerald Group Publishing Limited, vol. 23(3), pages 545-589, July.
  • Handle: RePEc:eme:jmlcpp:jmlc-02-2020-0012
    DOI: 10.1108/JMLC-02-2020-0012
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JMLC-02-2020-0012/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JMLC-02-2020-0012/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JMLC-02-2020-0012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Koutmos & Wang Chun Wei, 2023. "Nowcasting bitcoin’s crash risk with order imbalance," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 125-154, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jmlcpp:jmlc-02-2020-0012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.