IDEAS home Printed from https://ideas.repec.org/a/eme/ijhmap/ijhma-02-2022-0025.html
   My bibliography  Save this article

Explainable housing price prediction with determinant analysis

Author

Listed:
  • Ean Zou Teoh
  • Wei-Chuen Yau
  • Thian Song Ong
  • Tee Connie

Abstract

Purpose - This study aims to develop a regression-based machine learning model to predict housing price, determine and interpret factors that contribute to housing prices using different data sets available publicly. The significant determinants that affect housing prices will be first identified by using multinomial logistics regression (MLR) based on the level of relative importance. A comprehensive study is then conducted by using SHapley Additive exPlanations (SHAP) analysis to examine the features that cause the major changes in housing prices. Design/methodology/approach - Predictive analytics is an effective way to deal with uncertainties in process modelling and improve decision-making for housing price prediction. The focus of this paper is two-fold; the authors first apply regression analysis to investigate how well the housing independent variables contribute to the housing price prediction. Two data sets are used for this study, namely, Ames Housing dataset and Melbourne Housing dataset. For both the data sets, random forest regression performs the best by achieving an averageR2of 86% for the Ames dataset and 85% for the Melbourne dataset, respectively. Second, multinomial logistic regression is adopted to investigate and identify the factor determinants of housing sales price. For the Ames dataset, the authors find that the top three most significant factor variables to determine the housing price is the general living area, basement size and age of remodelling. As for the Melbourne dataset, properties having more rooms/bathrooms, larger land size and closer distance to central business district (CBD) are higher priced. This is followed by a comprehensive analysis on how these determinants contribute to the predictability of the selected regression model by using explainable SHAP values. These prominent factors can be used to determine the optimal price range of a property which are useful for decision-making for both buyers and sellers. Findings - By using the combination of MLR and SHAP analysis, it is noticeable that general living area, basement size and age of remodelling are the top three most important variables in determining the house’s price in the Ames dataset, while properties with more rooms/bathrooms, larger land area and closer proximity to the CBD or to the South of Melbourne are more expensive in the Melbourne dataset. These important factors can be used to estimate the best price range for a housing property for better decision-making. Research limitations/implications - A limitation of this study is that the distribution of the housing prices is highly skewed. Although it is normal that the properties’ price is normally cluttered at the lower side and only a few houses are highly price. As mentioned before, MLR can effectively help in evaluating the likelihood ratio of each variable towards these categories. However, housing price is originally continuous, and there is a need to convert the price to categorical type. Nonetheless, the most effective method to categorize the data is still questionable. Originality/value - The key point of this paper is the use of explainable machine learning approach to identify the prominent factors of housing price determination, which could be used to determine the optimal price range of a property which are useful for decision-making for both the buyers and sellers.

Suggested Citation

  • Ean Zou Teoh & Wei-Chuen Yau & Thian Song Ong & Tee Connie, 2022. "Explainable housing price prediction with determinant analysis," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 16(5), pages 1021-1045, August.
  • Handle: RePEc:eme:ijhmap:ijhma-02-2022-0025
    DOI: 10.1108/IJHMA-02-2022-0025
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJHMA-02-2022-0025/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJHMA-02-2022-0025/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJHMA-02-2022-0025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijhmap:ijhma-02-2022-0025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.