Author
Listed:
- Yanchao Rao
- Ken Huijin Guo
Abstract
Purpose - The US Securities and Exchange Commission (SEC) requires public companies to file structured data in eXtensible Business Reporting Language (XBRL). One of the key arguments behind the XBRL mandate is that the technical standard can help improve processing efficiency for data aggregators. This paper aims to empirically test the data processing efficiency hypothesis. Design/methodology/approach - To test the data processing efficiency hypothesis, the authors adopt a two-sample research design by using data from Compustat: a pooled sample (N = 61,898) and a quasi-experimental sample (N = 564). The authors measure data processing efficiency as the time lag between the dates of 10-K filings on the SEC’s EDGAR system and the dates of related data finalized in the Compustat database. Findings - The statistical results show that after controlling for potential effects of firm size, age, fiscal year and industry, XBRL has a non-significant impact on data efficiency. It suggests that the data processing efficiency benefit may have been overestimated. Originality/value - This study provides some timely empirical evidence to the debate as to whether XBRL can improve data processing efficiency. The non-significant results suggest that it may be necessary to revisit the mandate of XBRL reporting in the USA and many other countries.
Suggested Citation
Yanchao Rao & Ken Huijin Guo, 2021.
"Does XBRL help improve data processing efficiency?,"
International Journal of Accounting & Information Management, Emerald Group Publishing Limited, vol. 30(1), pages 47-60, October.
Handle:
RePEc:eme:ijaimp:ijaim-07-2021-0155
DOI: 10.1108/IJAIM-07-2021-0155
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijaimp:ijaim-07-2021-0155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.