Author
Listed:
- Min Qin
- Shuqin Li
- Fangtong Cai
- Wei Zhu
- Shanshan Qiu
Abstract
Purpose - With the proliferation of ideas submitted by users in firm-built online user innovation communities, community managers are faced with the problem of user idea overload. The purpose of this paper is to explore the influencing factors on the idea adoption to identify high quality ideas, and then propose a method to quickly filter high value ideas. Design/methodology/approach - The authors collected more than 110,000 data submitted by Xiaomi community users and analyzed the factors affecting idea adoption using a multinomial logistic regression model. In addition, the authors also used BP neural network to predict the idea adoption process. Findings - The empirical results show that idea semantics, number of likes, number of comments, number of related posts, the existence of pictures and self-presentation have positive impact on idea adoption, while idea length and idea timeliness had negative impact on idea adoption. In addition, this paper calculates the idea evaluation value through the idea adoption process predicted by neural network and the mean value of idea term frequency inverse document frequency (TF-IDF). Originality/value - This empirical study expands the theoretical perspective of idea adoption research by using dual-process theory and enriches the research methods in the field of idea adoption research through the multinomial logistic regression method. Based on our findings, firms can quickly identify valuable ideas and effectively alleviate the information overload problem of online user innovation communities.
Suggested Citation
Min Qin & Shuqin Li & Fangtong Cai & Wei Zhu & Shanshan Qiu, 2023.
"Where are your ideas going? Idea adoption in online user innovation communities,"
European Journal of Innovation Management, Emerald Group Publishing Limited, vol. 27(6), pages 2122-2148, March.
Handle:
RePEc:eme:ejimpp:ejim-08-2022-0439
DOI: 10.1108/EJIM-08-2022-0439
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ejimpp:ejim-08-2022-0439. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.