IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v202y2025ics1366554525003382.html
   My bibliography  Save this article

Inventory routing problem of automotive parts considering time-varying demands: A machine learning enhanced branch-and-price approach

Author

Listed:
  • Wang, Yu
  • Zheng, Renrong
  • Liang, Chengji
  • Shi, Jian

Abstract

With the rise of mass customization and smart manufacturing, the automotive industry is rapidly transitioning to improve responsiveness, manage highly diversified customer orders, and reduce inbound logistics costs. To address this challenge, this paper proposes a new variant of the multi-period inventory routing problem, which focuses on coordinating discrete, time-varying demands for auto parts on the assembly line with predetermined packages at suppliers over a finite short-term time horizon (e.g., on an hourly basis). The objective is to minimize the total transportation and inventory cost by making aperiodic decisions on collection quantities and traveling routes simultaneously for an inbound warehouse near the assembly plant. An integer programming (IP) formulation with time-indexed variables is tailored for the problem to analyze the feasibility conditions. Then, a reformulation is designed to make the problem more tractable, based on which a novel machine learning enhanced branch-and-price algorithm (BPL) is proposed, where prediction-based cuts are embedded to accelerate the pricing procedure. Experiments on real-scale instances demonstrate that the algorithm consistently achieves near-optimal solutions, with a gap of 4.42% on average from the best-found lower bound, and reduces computation time by over 90% compared to directly solving the IP model by CPLEX. The proposed learning technique is computationally efficient, capable of shortening the total calculation time by an average of 13%. This work facilitates timely decision-making and offers new insights into multi-period inventory routing for inbound logistics.

Suggested Citation

  • Wang, Yu & Zheng, Renrong & Liang, Chengji & Shi, Jian, 2025. "Inventory routing problem of automotive parts considering time-varying demands: A machine learning enhanced branch-and-price approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:transe:v:202:y:2025:i:c:s1366554525003382
    DOI: 10.1016/j.tre.2025.104297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525003382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:202:y:2025:i:c:s1366554525003382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.