IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v201y2025ics1366554525003266.html

Single allocation hub location problems with congestion: Mixed-integer second-order cone programming and Benders decomposition

Author

Listed:
  • Hu, Qing-Mi
  • Hu, Shaolong

Abstract

This paper presents a capacitated single allocation hub location problem with consideration of congestion, in which a mixed-integer nonlinear programming model is established due to the nonlinearity of the congestion cost. A novel Mixed-Integer Linear Programming (MILP) reformulation method utilizing the binary representation of non-negative integers and a strong Mixed-Integer Second-Order Cone Programming (MISOCP) reformulation method resting on the perspective cut are developed to deal with the resulting nonlinear model. Moreover, to further solve larger problems, an accelerated Benders Decomposition (BD) algorithm employing multi-cuts generation and Pareto-optimal cut strategies is devised, in which the master problem is formulated as a relaxed MISOCP so as to effectively utilize the strength of the perspective cut. Meanwhile, an efficient optimization algorithm is developed to generate Pareto-optimal cuts, which significantly saves the time consumption in solving the related dual sub-problems. Through extensive numerical analysis using Civil Aeronautics Board (CAB) and Australian Post (AP) data, it is demonstrated that the computational performance of the developed MILP and MISOCP reformulation methods is far superior to that of the existing classical reformulation methods such as a MILP reformulation method utilizing the McCormick envelop and a MISOCP reformulation method utilizing the feature of binary variables. The proposed BD algorithm can yield the optimal solution for instances with up to 75 nodes within the acceptable computational time. Unexpectedly, under the setting of loose hub capacities, a low congestion level can be also achieved by locating fewer hubs, rather than more hubs.

Suggested Citation

  • Hu, Qing-Mi & Hu, Shaolong, 2025. "Single allocation hub location problems with congestion: Mixed-integer second-order cone programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:transe:v:201:y:2025:i:c:s1366554525003266
    DOI: 10.1016/j.tre.2025.104285
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525003266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    2. Ivan Contreras & Morton O’Kelly, 2019. "Hub Location Problems," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 2, chapter 0, pages 327-363, Springer.
    3. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    4. Rodríguez, V. & Alvarez, M.J. & Barcos, L., 2007. "Hub location under capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 495-505, September.
    5. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    6. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    7. Qing-Mi Hu, 2017. "A reconfiguration optimisation model for hub-and-spoke network mergers," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 11(1), pages 101-132.
    8. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    9. Fernández, Elena & Sgalambro, Antonino, 2020. "On carriers collaboration in hub location problems," European Journal of Operational Research, Elsevier, vol. 283(2), pages 476-490.
    10. Avenali, Alessandro & D’Alfonso, Tiziana & Reverberi, Pierfrancesco, 2025. "Airline-High speed rail cooperation, hub congestion, and airport conduct," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    11. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    12. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    13. Ernst, Andreas T. & Krishnamoorthy, Mohan, 1998. "Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 100-112, January.
    14. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
    15. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    16. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    17. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    18. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Competitive hub location problem: Model and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 237-261.
    19. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    20. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
    21. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
    22. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    23. Marcelo P. L. Benedito & Lehilton L. C. Pedrosa, 2019. "Approximation algorithms for Median Hub Location Problems," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 375-401, August.
    24. Morton E. O'Kelly, 1986. "The Location of Interacting Hub Facilities," Transportation Science, INFORMS, vol. 20(2), pages 92-106, May.
    25. Hu, Qing-Mi & Hu, Shaolong & Wang, Jian & Li, Xiaoping, 2021. "Stochastic single allocation hub location problems with balanced utilization of hub capacities," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 204-227.
    26. Kara, Bahar Y. & Tansel, Barbaros C., 2000. "On the single-assignment p-hub center problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 648-655, September.
    27. Raviv, Tal, 2023. "The service points’ location and capacity problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    28. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    29. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    30. Ishfaq, Rafay & Sox, Charles R., 2012. "Design of intermodal logistics networks with hub delays," European Journal of Operational Research, Elsevier, vol. 220(3), pages 629-641.
    31. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "Single-assignment hub location problems with multiple capacity levels," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1047-1066, September.
    32. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    33. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2018. "Hub network design problem with profit optimization for time-definite LTL freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 104-120.
    34. O'kelly, Morton E., 1987. "A quadratic integer program for the location of interacting hub facilities," European Journal of Operational Research, Elsevier, vol. 32(3), pages 393-404, December.
    35. Dukkanci, Okan & Peker, Meltem & Kara, Bahar Y., 2019. "Green hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 116-139.
    36. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    37. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    38. Sebastian Wandelt & Weibin Dai & Jun Zhang & Xiaoqian Sun, 2022. "Toward a Reference Experimental Benchmark for Solving Hub Location Problems," Transportation Science, INFORMS, vol. 56(2), pages 543-564, March.
    39. Najy, Waleed & Diabat, Ali, 2020. "Benders decomposition for multiple-allocation hub-and-spoke network design with economies of scale and node congestion," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 62-84.
    40. Pardis Pourmohammadi & Reza Tavakkoli-Moghaddam & Yaser Rahimi & Chefi Triki, 2023. "Solving a hub location-routing problem with a queue system under social responsibility by a fuzzy meta-heuristic algorithm," Annals of Operations Research, Springer, vol. 324(1), pages 1099-1128, May.
    41. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "The Dynamic Uncapacitated Hub Location Problem," Transportation Science, INFORMS, vol. 45(1), pages 18-32, February.
    42. Vedat Bayram & Barış Yıldız & M. Saleh Farham, 2023. "Hub Network Design Problem with Capacity, Congestion, and Stochastic Demand Considerations," Transportation Science, INFORMS, vol. 57(5), pages 1276-1295, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayram, Vedat & Aydoğan, Çiya & Kargar, Kamyar, 2025. "Multi-period hub network design from a dual perspective: An integrated approach considering congestion, demand uncertainty, and service quality optimization," European Journal of Operational Research, Elsevier, vol. 326(1), pages 78-95.
    2. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    3. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2024. "An exact method for trilevel hub location problem with interdiction," European Journal of Operational Research, Elsevier, vol. 319(3), pages 696-710.
    4. Azizi, Nader & Salhi, Said, 2022. "Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor," European Journal of Operational Research, Elsevier, vol. 298(3), pages 834-854.
    5. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.
    6. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Liu, Xiaoyue & Li, Jingze & Dahan, Mathieu & Montreuil, Benoit, 2025. "Dynamic hub capacity planning in hyperconnected relay transportation networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    8. Hu, Qing-Mi & Hu, Shaolong & Wang, Jian & Li, Xiaoping, 2021. "Stochastic single allocation hub location problems with balanced utilization of hub capacities," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 204-227.
    9. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    10. Domínguez-Bravo, Carmen-Ana & Fernández, Elena & Lüer-Villagra, Armin, 2024. "Hub location with congestion and time-sensitive demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 828-844.
    11. Rahmati, Reza & Neghabi, Hossein & Bashiri, Mahdi & Salari, Majid, 2023. "Stochastic regional-based profit-maximizing hub location problem: A sustainable overview," Omega, Elsevier, vol. 121(C).
    12. Hu, Lu & Zhu, Juan Xiu & Wang, Yuan & Lee, Loo Hay, 2018. "Joint design of fleet size, hub locations, and hub capacities for third-party logistics networks with road congestion constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 568-588.
    13. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    14. Taherkhani, Gita & Hosseini, Mojtaba & Alumur, Sibel A., 2024. "Sustainable hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 187(C).
    15. Yang, Lingxiao & Zheng, Jianfeng & Wang, Jian & Hu, Xiaowei, 2023. "The maximal detour liner shipping hub location problem: Improving the applicability of the p-hub center problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    16. Rostami, Borzou & Kämmerling, Nicolas & Naoum-Sawaya, Joe & Buchheim, Christoph & Clausen, Uwe, 2021. "Stochastic single-allocation hub location," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1087-1106.
    17. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. Jalili Marand, Ata & Hoseinpour, Pooya, 2025. "Profit maximization in congested hub location problems: Demand models and service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    19. Setiawan, Fran & Bektaş, Tolga & Iris, Çağatay, 2025. "The hub location problem with comparisons of compact formulations: A note," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    20. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:201:y:2025:i:c:s1366554525003266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.