IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v201y2025ics1366554525003023.html

Optimising bin-driven used product take-back supply chain: A circular economy approach to ESG performance

Author

Listed:
  • Gunasekara, Lahiru
  • Ganguly, Subhamoy
  • Robb, David J.

Abstract

Businesses are increasingly adopting product take-back programmes as part of their environmental initiatives. A frequently used method involves setting up bins where consumers can return their used products. Despite their growing popularity, these programmes have received limited research attention. This research extends take-back literature by incorporating novel bin configuration considerations and evaluating the economic benefits of volume reduction technologies. We develop a detailed mathematical framework to determine the optimal reverse supply chain (RSC) strategies for take-back. We validate our model through a real-world case study implementation. Furthermore, by testing it across diverse global scenarios with various parameter combinations, we generate broadly applicable findings that advance both theoretical understanding and practical implementation. Our analysis reveals that optimal bin configuration varies by returns volume: mixed product streams in a single bin prove more economical at low-volume sites, while separate collection bins become advantageous at high-volume locations. The implementation of shredding technology emerges as a crucial cost-reduction strategy, that is particularly effective when deployed at high-volume storage facilities. For a wide range of experiments, transportation costs represent approximately half of optimised total expenses. Higher contamination levels in bins correlate with reduced transportation expenditure, but this brings increased disposal fees and negative environmental impact. Our findings recommend maintaining a mixed inventory of shredded and non-shredded materials at storage facilities, with selective transportation to recycling centres. The proposed models and recommendations provide practical decision-making tools for businesses seeking to optimise take-back operations, contributing to the broader implementation of circular economy principles for environmental performance.

Suggested Citation

  • Gunasekara, Lahiru & Ganguly, Subhamoy & Robb, David J., 2025. "Optimising bin-driven used product take-back supply chain: A circular economy approach to ESG performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:transe:v:201:y:2025:i:c:s1366554525003023
    DOI: 10.1016/j.tre.2025.104261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525003023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. B.C. Giri & Christoph H. Glock, 2017. "A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6760-6778, November.
    2. Gebennini, Elisa & Gamberini, Rita & Manzini, Riccardo, 2009. "An integrated production-distribution model for the dynamic location and allocation problem with safety stock optimization," International Journal of Production Economics, Elsevier, vol. 122(1), pages 286-304, November.
    3. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    4. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    5. Tagaras, George & Zikopoulos, Christos, 2008. "Optimal location and value of timely sorting of used items in a remanufacturing supply chain with multiple collection sites," International Journal of Production Economics, Elsevier, vol. 115(2), pages 424-432, October.
    6. K M M Sheriff & S Nachiappan & H Min, 2014. "Combined location and routing problems for designing the quality-dependent and multi-product reverse logistics network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(6), pages 873-887, June.
    7. Behnam Vahdani & Elham Ahmadzadeh, 2021. "Incorporating Price-Dependent Demands into a Multi-Echelon Closed-Loop Network Considering the Lost Sales and Backorders: a Case Study of Wireless Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 639-680, September.
    8. Zikopoulos, Christos & Tagaras, George, 2015. "Reverse supply chains: Effects of collection network and returns classification on profitability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 435-449.
    9. Wang, Junbin & Zhang, Ting & Fan, Xiaojun, 2020. "Reverse channel design with a dominant retailer and upstream competition in emerging markets: Retailer- or manufacturer- collection?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    10. Giri, B. C. & Glock, C. H., 2017. "A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88878, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    12. Pradeep Rathore & Sarada Prasad Sarmah & Arti Singh, 2020. "Location–allocation of bins in urban solid waste management: a case study of Bilaspur city, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3309-3331, April.
    13. Enrico Cagno & Federico Magalini & Paolo Trucco, 2008. "Modelling and planning of Product Recovery Network: the case study of end-of-life refrigerators in Italy," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 8(4), pages 385-404.
    14. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    15. Mohsen Tehrani & Surendra M. Gupta, 2021. "Designing a Sustainable Green Closed-Loop Supply Chain under Uncertainty and Various Capacity Levels," Logistics, MDPI, vol. 5(2), pages 1-31, April.
    16. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    17. B. C. Giri & M. Masanta, 2022. "A closed-loop supply chain model with uncertain return and learning-forgetting effect in production under consignment stock policy," Operational Research, Springer, vol. 22(2), pages 947-975, April.
    18. Elena Kazakova & Joosung Lee, 2022. "Sustainable Manufacturing for a Circular Economy," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    19. Kun Guo & Qishan Zhang, 2017. "A Discrete Artificial Bee Colony Algorithm for the Reverse Logistics Location and Routing Problem," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1339-1357, September.
    20. Shraddha Mishra & Surya Prakash Singh, 2022. "Designing dynamic reverse logistics network for post-sale service," Annals of Operations Research, Springer, vol. 310(1), pages 89-118, March.
    21. Mateusz Lewandowski, 2016. "Designing the Business Models for Circular Economy—Towards the Conceptual Framework," Sustainability, MDPI, vol. 8(1), pages 1-28, January.
    22. Soleimani, Hamed & Govindan, Kannan, 2014. "Reverse logistics network design and planning utilizing conditional value at risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 487-497.
    23. Phemelo Tamasiga & Helen Onyeaka & Malebogo Bakwena & El houssin Ouassou, 2024. "Beyond compliance: evaluating the role of environmental, social and governance disclosures in enhancing firm value and performance," SN Business & Economics, Springer, vol. 4(10), pages 1-38, October.
    24. Gebhardt, Maximilian & Spieske, Alexander & Birkel, Hendrik, 2022. "The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    25. repec:ite:iteeco:240200 is not listed on IDEAS
    26. Hamid Afshari & Masoud Sharafi & Tarek Y. ElMekkawy & Qingjin Peng, 2016. "Multi-objective optimisation of facility location decisions within integrated forward/reverse logistics under uncertainty," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 8(3), pages 250-276.
    27. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    28. repec:ite:iteeco:240100 is not listed on IDEAS
    29. Hadiqa Ahmad & Muhammad Yaqub & Seung Hwan Lee, 2024. "Environmental-, social-, and governance-related factors for business investment and sustainability: a scientometric review of global trends," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 2965-2987, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunasekara, Lahiru & Robb, David J. & Zhang, Abraham, 2023. "Used product acquisition, sorting and disposition for circular supply chains: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 260(C).
    2. Mohsen Zamani & Mahdi Abolghasemi & Seyed Mohammad Seyed Hosseini & Mir Saman Pishvaee, 2019. "Considering pricing and uncertainty in designing a reverse logistics network," Papers 1909.11633, arXiv.org.
    3. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    4. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    5. Beste Desticioglu & Hatice Calipinar & Bahar Ozyoruk & Erdinc Koc, 2022. "Model for Reverse Logistic Problem of Recycling under Stochastic Demand," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    6. Zhang, Yanzi & Berenguer, Gemma & Zhang, Zhi-Hai, 2024. "A subsidized reverse supply chain in the Chinese electronics industry," Omega, Elsevier, vol. 122(C).
    7. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    8. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    9. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    10. M. Masanta & B. C. Giri, 2022. "A manufacturing–remanufacturing supply chain model with learning and forgetting in inspection under consignment stock agreement," Operational Research, Springer, vol. 22(4), pages 4093-4117, September.
    11. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    12. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    13. B. C. Giri & M. Masanta, 2022. "A closed-loop supply chain model with uncertain return and learning-forgetting effect in production under consignment stock policy," Operational Research, Springer, vol. 22(2), pages 947-975, April.
    14. Eskandarpour, Majid & Zegordi, Seyed Hessameddin & Nikbakhsh, Ehsan, 2013. "A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 117-131.
    15. Vahid Azizi & Guiping Hu, 2021. "A Multi-Stage Stochastic Programming Model for the Multi-Echelon Multi-Period Reverse Logistics Problem," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    16. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    17. Wang, Kung-Jeng & Febri, Natalia, 2024. "The vending machine deployment and shelf display problem: A bi-layer optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    18. M. Masanta & B. C. Giri, 2022. "A closed-loop supply chain model with learning effect, random return and imperfect inspection under price- and quality-dependent demand," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1094-1115, September.
    19. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    20. Ruiz-Benítez, Rocío & Ketzenberg, Michael & van der Laan, Erwin A., 2014. "Managing consumer returns in high clockspeed industries," Omega, Elsevier, vol. 43(C), pages 54-63.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:201:y:2025:i:c:s1366554525003023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.