IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v201y2025ics1366554525002947.html

Modeling the sparsity and density of measurement errors for origin–destination demand estimation

Author

Listed:
  • Liu, Pengjie
  • Shao, Feng
  • Shao, Hu
  • Wu, Ting
  • Fainman, Emily Zhu

Abstract

Conventional studies on origin–destination (OD) demand estimation (ODDE) problems often overlook the inherent characteristics of different input data sources, namely the currently observed data and historical/empirical data. These data sources contain varying information on OD demand with differing levels of accuracy. Herein, this study introduces a model that incorporates these two different data sources and considers the different measurement criteria arising in ODDE problems. In the introduced model, most of the estimated link flows are expected to exactly match the observed ones. To achieve this, we use the ℓ1-norm as a measurement criterion to obtain a sparsity error between estimated and observed link flows, with the goal of aligning some of the estimated link flows to match the observed values exactly. For the historical/empirical data (the prior OD demand), the model aims for the estimated demands of all OD pairs to be as close as possible to the historical/empirical values, without requiring any estimated demands to match them exactly. We apply the ℓ2-norm as the measurement criterion to capture the density error between the estimated and historical OD demands. The introduced model, termed the ℓ1-ℓ2 ODDE model, explicitly accounts for the sparsity and density of measurement errors using ℓ1- and ℓ2-norms. Considering the travelers’ path choice behavior in congested transportation networks, we formulate a bilevel ODDE model, wherein the upper-level problem balances measurement errors from different input data sources, and the lower-level problem is based on user equilibrium principle. Furthermore, we use a heuristic algorithm based on upper–lower alternating iteration to solve the introduced model. Numerical experiments, conducted on two real transportation networks, show the applicability and effectiveness of the introduced model and algorithm.

Suggested Citation

  • Liu, Pengjie & Shao, Feng & Shao, Hu & Wu, Ting & Fainman, Emily Zhu, 2025. "Modeling the sparsity and density of measurement errors for origin–destination demand estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:transe:v:201:y:2025:i:c:s1366554525002947
    DOI: 10.1016/j.tre.2025.104253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525002947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Iida, Yasunori & Sasaki, Tsuna, 1994. "The equilibrium-based origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 23-33, February.
    2. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    3. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    5. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
    6. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Huang, Wei & Huang, Wentao & Jian, Sisi, 2022. "One-way carsharing service design under demand uncertainty: A service reliability-based two-stage stochastic program approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    8. Codina, Esteve & Barcelo, Jaume, 2004. "Adjustment of O-D trip matrices from observed volumes: An algorithmic approach based on conjugate directions," European Journal of Operational Research, Elsevier, vol. 155(3), pages 535-557, June.
    9. Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
    10. Tu, Ningwen & Adiputranto, Dimas & Fu, Xiaowen & Li, Zhi-Chun, 2018. "Shipping network design in a growth market: The case of Indonesia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 108-125.
    11. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Li, Jiangtao & Yang, Zhenzhen & Gao, Ziyou, 2022. "Identifying intercity freight trip ends of heavy trucks from GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    13. Chen, Liao & Ma, Shoufeng & Li, Changlin & Yang, Yuance & Wei, Wei & Cui, Runbang, 2024. "A spatial–temporal graph-based AI model for truck loan default prediction using large-scale GPS trajectory data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    14. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    15. Xie, Jiaohong & Yang, Zhenyu & Lai, Xiongfei & Liu, Yang & Yang, Xiao Bo & Teng, Teck-Hou & Tham, Chen-Khong, 2022. "Deep reinforcement learning for dynamic incident-responsive traffic information dissemination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Jingxing Wang & Shu Lu & Hongsheng Liu & Xuegang (Jeff) Ban, 2023. "Transportation Origin-Destination Demand Estimation with Quasi-Sparsity," Transportation Science, INFORMS, vol. 57(2), pages 289-312, March.
    17. Watling, David P., 1994. "Maximum likelihood estimation of an origin-destination matrix from a partial registration plate survey," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 289-314, August.
    18. Miller, Seth & Laan, Zachary Vander & Marković, Nikola, 2020. "Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    19. Spiess, Heinz, 1987. "A maximum likelihood model for estimating origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 21(5), pages 395-412, October.
    20. Chao Sun & Yulin Chang & Xin Luan & Qiang Tu & Wenyun Tang, 2020. "Origin-Destination Demand Reconstruction Using Observed Travel Time under Congested Network," Networks and Spatial Economics, Springer, vol. 20(3), pages 733-755, September.
    21. Demissie, Merkebe Getachew & Kattan, Lina, 2022. "Estimation of truck origin-destination flows using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    22. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    23. He, Zhangyuan & Zhao, Pengjun & Xiao, Zuopeng & Huang, Xin & Li, Zhaoxiang & Kang, Tingting, 2024. "Exploring the distance decay in port hinterlands under port regionalization using truck GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    24. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    25. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    26. Fisk, C. S., 1988. "On combining maximum entropy trip matrix estimation with user optimal assignment," Transportation Research Part B: Methodological, Elsevier, vol. 22(1), pages 69-73, February.
    27. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    28. Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    29. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    30. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    31. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    32. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    33. Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
    34. Guarda, Pablo & Qian, Sean, 2024. "Statistical inference of travelers’ route choice preferences with system-level data," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    35. Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
    36. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    2. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    3. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    4. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    5. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    6. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    7. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    8. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    9. S. Travis Waller & Sai Chand & Aleksa Zlojutro & Divya Nair & Chence Niu & Jason Wang & Xiang Zhang & Vinayak V. Dixit, 2021. "Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    10. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    11. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    12. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    13. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    14. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    15. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1999. "Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 369-385, June.
    16. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    17. Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
    18. Z. Wu & W. Lam, 2006. "Transit passenger origin-destination estimation in congested transit networks with elastic line frequencies," Annals of Operations Research, Springer, vol. 144(1), pages 363-378, April.
    19. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    20. Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:201:y:2025:i:c:s1366554525002947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.