IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v200y2025ics1366554525001310.html

Scheduling intelligent charging robots for electric vehicle: A deep reinforcement learning approach

Author

Listed:
  • Ding, Yi
  • Deng, Ming
  • Ke, Ginger Y.
  • Shen, Yingjun
  • Zhang, Lianmin

Abstract

The surge in popularity of electric vehicles (EVs) has created a need for adaptable and flexible charging infrastructure. Intelligent Charging Robots (ICRs) have emerged as a promising solution to overcome issues faced by fixed charging stations, such as insufficient coverage, station occupancy, spatial constraints, and strain on the power grid. Nonetheless, optimizing the operational efficiency of ICRs presents a significant challenge. This study focuses on optimizing the scheduling of ICRs in a public parking facility through Deep Reinforcement Learning (DRL) methods. We first introduce the Intelligent Charging Robots Scheduling Problem (ICRSP) that maximizes either the number of EVs served (MN) or the total output electricity of ICRs (ME), and establish the corresponding mathematical model. Then, a DRL framework based on the Transformer structure is proposed to tackle ICRSP by integrating decisions of ICR assignment and EV sequencing to enhance solution quality. Furthermore, we devise a masking mechanism in the decoder to manage ICRs’ self-charging behavior during the charging service. Finally, experimental results validate the effectiveness of the proposed DRL approach in providing efficient scheduling solutions for large-scale ICRSP instances. The comparative analysis of MN-ICRSP and ME-ICRSP models offers valuable insights for ICRs operation scheduling, aiding in balancing operator revenue and customer satisfaction.

Suggested Citation

  • Ding, Yi & Deng, Ming & Ke, Ginger Y. & Shen, Yingjun & Zhang, Lianmin, 2025. "Scheduling intelligent charging robots for electric vehicle: A deep reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:transe:v:200:y:2025:i:c:s1366554525001310
    DOI: 10.1016/j.tre.2025.104090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dujuan & Wang, Qi & Yin, Yunqiang & Cheng, T.C.E., 2023. "Optimization of ride-sharing with passenger transfer via deep reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    2. Renke Liu & Rajesh Piplani & Carlos Toro, 2022. "Deep reinforcement learning for dynamic scheduling of a flexible job shop," International Journal of Production Research, Taylor & Francis Journals, vol. 60(13), pages 4049-4069, July.
    3. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    4. Nazari-Heris, Morteza & Loni, Abdolah & Asadi, Somayeh & Mohammadi-ivatloo, Behnam, 2022. "Toward social equity access and mobile charging stations for electric vehicles: A case study in Los Angeles," Applied Energy, Elsevier, vol. 311(C).
    5. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    6. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    7. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Liu, Shan & Jiang, Hai, 2022. "Personalized route recommendation for ride-hailing with deep inverse reinforcement learning and real-time traffic conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Afshar, Shahab & Pecenak, Zachary K. & Barati, Masoud & Disfani, Vahid, 2022. "Mobile charging stations for EV charging management in urban areas: A case study in Chattanooga," Applied Energy, Elsevier, vol. 325(C).
    10. Tang, Mengcheng & Zhuang, Weichao & Li, Bingbing & Liu, Haoji & Song, Ziyou & Yin, Guodong, 2023. "Energy-optimal routing for electric vehicles using deep reinforcement learning with transformer," Applied Energy, Elsevier, vol. 350(C).
    11. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin & Chen, Min, 2023. "Collaborative optimization of logistics and electricity for the mobile charging service system," Applied Energy, Elsevier, vol. 336(C).
    12. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    13. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    14. Liu, Yang & Wu, Fanyou & Lyu, Cheng & Li, Shen & Ye, Jieping & Qu, Xiaobo, 2022. "Deep dispatching: A deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    15. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Afshar, Shahab & Macedo, Pablo & Mohamed, Farog & Disfani, Vahid, 2021. "Mobile charging stations for electric vehicles — A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruglieri, M. & Çatay, B. & Keskin, M. & Mancini, S. & Pisacane, O., 2025. "The Mixed-Fleet Vehicle Routing Problem with Low Emission Zones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 201(C).
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Duan, Sudong & Zhang, Zhonghui & Wang, Zhaojun & Xiong, Xiaoyue & Chen, Xinhan & Que, Xiaoyu, 2025. "A study on mobile charging station combined with integrated energy system: Emphasis on energy dispatch strategy and multi-scenario analysis," Renewable Energy, Elsevier, vol. 239(C).
    4. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    5. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    6. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    7. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    8. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    9. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    10. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    11. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    13. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    14. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin, 2024. "Planning approach for integrating charging stations and renewable energy sources in low-carbon logistics delivery," Applied Energy, Elsevier, vol. 372(C).
    15. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Xin, Xu & Zhang, Tao & Xiang, Zhengliang & Liu, Miaohui, 2025. "Battery electric vehicle transportation network robust pricing-infrastructure location model with boundedly rational travelers," Applied Energy, Elsevier, vol. 386(C).
    17. Lera-Romero, Gonzalo & Miranda Bront, Juan José & Soulignac, Francisco J., 2024. "A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 312(3), pages 978-995.
    18. Xiao, Jiuhong & Wang, Shuyi & Xiao, Jianhua & Huang, George Q., 2024. "Delivery routing for electric vehicles with en-route mobile battery swapping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    19. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    20. Liu, Chenglin & Xu, Zhihang & Xu, Zhigang & Zhang, Meng & Gao, Ying & Wang, Jianqiang & Qu, Xiaobo, 2025. "Joint route and charging schedule optimization for electric vehicles considering nonlinear charging process using State-Space-Time networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 201(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:200:y:2025:i:c:s1366554525001310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.