IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v176y2023ics1366554523001643.html
   My bibliography  Save this article

Route planning using divide-and-conquer: A GAT enhanced insertion transformer approach

Author

Listed:
  • Zhang, Pujun
  • Liu, Shan
  • Shi, Jia
  • Chen, Liying
  • Chen, Shuiping
  • Gao, Jiuchong
  • Jiang, Hai

Abstract

Route planning is widely used in areas such as car navigation. For some popular mobility services such as meal delivery and online car-hailing, planning routes that closely follow drivers’ actual routes is important. Some existing methods propose that drivers plan routes in two steps: first identify intermediate waypoints on the route that connects the origin and destination; then find a series of sub-routes between successive waypoints, respectively. In this research, we advance these methods as follows: (1) We generalize the two-step process to a divide-and-conquer framework. We first identify intermediate waypoints between the origin and the destination and decompose the route planning problem into several sub-problems, whose intermediate waypoints are identified again. We recursively repeat this process until no more waypoints are identified for all the sub-problems; and (2) Unlike existing studies that identify waypoints solely based on the travel frequency of links, we propose a Graph Attention Network (GAT) Enhanced Insertion Transformer (GEIT) model for waypoint identification. GEIT model uses an Insertion Transformer to learn the relationship among links, which can better capture the mobility pattern embedded in historical routes. In addition, by incorporating a GAT to enhance our link representations, our model spreads the learned information along the road network to address the trajectory sparseness problem. Numerical experiments on a real-world trajectory data set demonstrate that the routes planned by our model show fewer deviations from the actual routes compared with state-of-the-art route planning algorithms.

Suggested Citation

  • Zhang, Pujun & Liu, Shan & Shi, Jia & Chen, Liying & Chen, Shuiping & Gao, Jiuchong & Jiang, Hai, 2023. "Route planning using divide-and-conquer: A GAT enhanced insertion transformer approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transe:v:176:y:2023:i:c:s1366554523001643
    DOI: 10.1016/j.tre.2023.103176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523001643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:176:y:2023:i:c:s1366554523001643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.