IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v82y2025ics0160791x25000879.html

Bridging robotics/AI and real-world labs: A quantitative approach based on mining German newspaper articles

Author

Listed:
  • Loewe, Martha
  • Ott, Ingrid

Abstract

Both, robotics/AI (RAI) and real-world labs (RWLs), are current topics in public innovation promotion policies, but are mostly treated in isolation. While RAI has a focus on a specific technology to serve society, RWLs address the institutional context including experimental learning of governments and societal perspectives. We are particularly interested in the interface between RAI and RWLs and the way media are reporting on these two domains. This reflects key aspects of the social debate in relation to RAI and RWLs. We base our analysis on the understanding that technology development and diffusion ultimately depend on institutional arrangements that are developed alongside or in lieu of market arrangements and also reflect societal needs. This paper uses quantitative text analysis to examine 3,800 German broadsheet newspaper articles in the period 2016–2023. We use Structural Topic Modeling (STM) with publication date and sub-corpus source as covariates to trace topic dynamics and topical prevalence contrast. We show that the dominant topic has changed over time from RAI (“Machine Learning and AI Development Methods”) to RWL (“Real-World Labs for the Energy Transition”). We identify bridge topics and argue that these are diverse and include philosophical and legal considerations, public funding and specific application areas for robots, e.g. in schools. As indicators to identify the interface between the two domains (RAI, RWL), we propose a combination of topical prevalence contrast and eigenvector centrality and the use of psycholinguistic attributes to evaluate the topics. These elements could be broadly used to exploit possible complementarities for government experimental learning and when designing “smart regulation” which targets several fields simultaneously.

Suggested Citation

  • Loewe, Martha & Ott, Ingrid, 2025. "Bridging robotics/AI and real-world labs: A quantitative approach based on mining German newspaper articles," Technology in Society, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:teinso:v:82:y:2025:i:c:s0160791x25000879
    DOI: 10.1016/j.techsoc.2025.102897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X25000879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2025.102897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Michael Grubb & Paul Drummond & Alexandra Poncia & Will Mcdowall & David Popp & Sascha Samadi & Cristina Penasco & Kenneth Gillingham & Sjak Smulders & Matthieu Glachant & Gavin Hassall & Emi Mizuno &, 2021. "Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO 2 mitigation," Post-Print hal-03189044, HAL.
    2. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    3. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    4. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    5. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    6. La Ferrara, Eliana & DellaVigna, Stefano, 2015. "Economic and Social Impacts of the Media," CEPR Discussion Papers 10667, C.E.P.R. Discussion Papers.
    7. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    8. Ingrid Ott, 2024. "Technology assessment in innovation systems," Chapters, in: Armin Grunwald (ed.), Handbook of Technology Assessment, chapter 31, pages 310-321, Edward Elgar Publishing.
    9. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
    10. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra & Abhijit Majumdar & Yigit Kazancoglu, 2022. "An Exploratory State-of-the-Art Review of Artificial Intelligence Applications in Circular Economy using Structural Topic Modeling," Operations Management Research, Springer, vol. 15(3), pages 609-626, December.
    11. Savin, Ivan & Ott, Ingrid & Konop, Chris, 2022. "Tracing the evolution of service robotics: Insights from a topic modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    12. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    13. Ingrid Ott & Simone Vannuccini, 2023. "Invention in Times of Global Challenges: A Text-Based Study of Remote Sensing and Global Public Goods," Economies, MDPI, vol. 11(8), pages 1-24, August.
    14. Martha Loewe & Christine Quittkat & Michèle Knodt & Ingrid Ott, 2024. "The Impact of the Russian War against Ukraine on the German Hydrogen Discourse," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    15. Matthew Gentzkow & Jesse M. Shapiro, 2010. "What Drives Media Slant? Evidence From U.S. Daily Newspapers," Econometrica, Econometric Society, vol. 78(1), pages 35-71, January.
    16. William T. Stringfellow & Patrick F. Dobson, 2021. "Technology for the Recovery of Lithium from Geothermal Brines," Energies, MDPI, vol. 14(20), pages 1-72, October.
    17. Julia Cagé & Moritz Hengel & Nicolas Hervé & Camille Urvoy, 2022. "Hosting Media Bias: Evidence from the Universe of French Broadcasts, 2002-2020," Sciences Po Economics Publications (main) hal-03878119, HAL.
    18. Lehotský, Lukáš & Černoch, Filip & Osička, Jan & Ocelík, Petr, 2019. "When climate change is missing: Media discourse on coal mining in the Czech Republic," Energy Policy, Elsevier, vol. 129(C), pages 774-786.
    19. Margaret E. Roberts & Brandon M. Stewart & Dustin Tingley & Christopher Lucas & Jetson Leder‐Luis & Shana Kushner Gadarian & Bethany Albertson & David G. Rand, 2014. "Structural Topic Models for Open‐Ended Survey Responses," American Journal of Political Science, John Wiley & Sons, vol. 58(4), pages 1064-1082, October.
    20. Israel Griol-Barres & Sergio Milla & Antonio Cebrián & Huaan Fan & Jose Millet, 2020. "Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    21. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    22. Margaret E. Roberts & Brandon M. Stewart & Edoardo M. Airoldi, 2016. "A Model of Text for Experimentation in the Social Sciences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 988-1003, July.
    23. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    24. Kevin M. Quinn & Burt L. Monroe & Michael Colaresi & Michael H. Crespin & Dragomir R. Radev, 2010. "How to Analyze Political Attention with Minimal Assumptions and Costs," American Journal of Political Science, John Wiley & Sons, vol. 54(1), pages 209-228, January.
    25. Bryan Kelly & Dimitris Papanikolaou & Amit Seru & Matt Taddy, 2021. "Measuring Technological Innovation over the Long Run," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 303-320, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    3. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    4. Mourtgos, Scott M. & Adams, Ian T., 2019. "The rhetoric of de-policing: Evaluating open-ended survey responses from police officers with machine learning-based structural topic modeling," Journal of Criminal Justice, Elsevier, vol. 64(C), pages 1-1.
    5. Sandra Wankmüller, 2023. "A comparison of approaches for imbalanced classification problems in the context of retrieving relevant documents for an analysis," Journal of Computational Social Science, Springer, vol. 6(1), pages 91-163, April.
    6. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    7. Josef Taalbi, 2017. "Development blocks in innovation networks," Journal of Evolutionary Economics, Springer, vol. 27(3), pages 461-501, July.
    8. Camilla Salvatore & Silvia Biffignandi & Annamaria Bianchi, 2022. "Corporate Social Responsibility Activities Through Twitter: From Topic Model Analysis to Indexes Measuring Communication Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1217-1248, December.
    9. repec:osf:socarx:yfzsh_v1 is not listed on IDEAS
    10. Grajzl, Peter & Murrell, Peter, 2024. "Caselaw and England's economic performance during the Industrial Revolution: Data and evidence," Journal of Comparative Economics, Elsevier, vol. 52(1), pages 145-165.
    11. Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
    12. Oliver Wieczorek & Saïd Unger & Jan Riebling & Lukas Erhard & Christian Koß & Raphael Heiberger, 2021. "Mapping the field of psychology: Trends in research topics 1995–2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9699-9731, December.
    13. Ulrich Fritsche & Johannes Puckelwald, 2018. "Deciphering Professional Forecasters’ Stories - Analyzing a Corpus of Textual Predictions for the German Economy," Macroeconomics and Finance Series 201804, University of Hamburg, Department of Socioeconomics.
    14. Bongsug (Kevin) Chae & Eunhye (Olivia) Park, 2018. "Corporate Social Responsibility (CSR): A Survey of Topics and Trends Using Twitter Data and Topic Modeling," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    15. Peter Grajzl & Peter Murrell, 2021. "Characterizing a legal–intellectual culture: Bacon, Coke, and seventeenth-century England," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 15(1), pages 43-88, January.
    16. Peter Grajzl & Cindy Irby, 2019. "Reflections on study abroad: a computational linguistics approach," Journal of Computational Social Science, Springer, vol. 2(2), pages 151-181, July.
    17. Lai, Jiun-Yan & Hung, Shih-Chang, 2025. "A socio-cognitive analysis of innovation diffusion: Interventionism and substantiveness," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    18. van Loon, Austin, 2022. "Three Families of Automated Text Analysis," SocArXiv htnej, Center for Open Science.
    19. Dehler-Holland, Joris, 2025. "From virtuous to vicious cycles – towards a life cycle model of technology deployment policies," Research Policy, Elsevier, vol. 54(7).
    20. Karell, Daniel & Freedman, Michael Raphael, 2019. "Rhetorics of Radicalism," SocArXiv yfzsh, Center for Open Science.
    21. Keith Carlson & Michael A. Livermore & Daniel N. Rockmore, 2020. "The Problem of Data Bias in the Pool of Published U.S. Appellate Court Opinions," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(2), pages 224-261, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:82:y:2025:i:c:s0160791x25000879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.