IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i1p157-162.html
   My bibliography  Save this article

A sufficient condition of crossing type for the bivariate orthant convex order

Author

Listed:
  • Denuit, Michel
  • Mesfioui, Mhamed

Abstract

In this work, we derive a sufficient condition for the orthant convex order based on the single crossing of the respective joint survival functions. This condition is expressed in terms of the generators for Archimedean copulas. Numerical examples show that this condition is valid for members of standard copula families (including the Clayton and Frank ones).

Suggested Citation

  • Denuit, Michel & Mesfioui, Mhamed, 2013. "A sufficient condition of crossing type for the bivariate orthant convex order," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 157-162.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:157-162
    DOI: 10.1016/j.spl.2012.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel & Mesfioui, Mhamed, 2010. "Generalized increasing convex and directionally convex orders," LIDAM Reprints ISBA 2010029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Mesfioui, Mhamed, 2010. "Generalized increasing convex and directionally convex orders," LIDAM Discussion Papers ISBA 2010012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," LIDAM Discussion Papers ISBA 2019006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    3. Denuit, Michel & Sznajder, Dominik & Trufin, Julien, 2019. "Model selection based on Lorenz and concentration curves, Gini indices and convex order," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 128-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    2. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    3. Denuit, Michel & Mesfioui, Mhamed, 2013. "Multivariate higher-degree stochastic increasing convexity," LIDAM Discussion Papers ISBA 2013016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Mesfioui, Mhamed & Denuit, Michel M., 2015. "Comonotonicity, orthant convex order and sums of random variables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 356-364.
    5. Muller, Christophe & Trannoy, Alain, 2012. "Multidimensional inequality comparisons: A compensation perspective," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1427-1449.
    6. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    7. Christoph Heinzel, 2014. "Term structure of discount rates under multivariate s-ordered consumption growth," Working Papers SMART 14-01, INRAE UMR SMART.
    8. Denuit, Michel & Mesfioui, Mhamed, 2012. "A sufficient condition of crossing-type for the bivariate orthant convex order," LIDAM Discussion Papers ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Denuit, Michel M. & Mesfioui, Mhamed, 2017. "Preserving the Rothschild–Stiglitz type increase in risk with background risk: A characterization," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 1-5.
    10. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    11. Michel M. Denuit & Mhamed Mesfioui, 2016. "Multivariate Higher-Degree Stochastic Increasing Convexity," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1599-1623, December.
    12. Mesfioui, Mhamed & Denuit, Michel, 2014. "Comonotonicity, orthant convex order and sums of random variables," LIDAM Discussion Papers ISBA 2014002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:157-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.