IDEAS home Printed from
   My bibliography  Save this article

A theory for the multiset sampler


  • Chen, Yuguo


The multiset sampler (MSS) can be viewed as a new data augmentation scheme and it has been applied successfully to a wide range of statistical inference problems. The key idea of the MSS is to augment the system with a multiset of the missing components, and construct an appropriate joint distribution of the parameters of interest and the missing components to facilitate the inference based on Markov chain Monte Carlo. The standard data augmentation strategy corresponds to the MSS with multiset size one. This paper provides a theoretical comparison of the MSS with different multiset sizes. We show that the MSS converges to the target distribution faster as the multiset size increases. This explains the improvement in convergence rate for the MSS with large multiset sizes over the standard data augmentation scheme.

Suggested Citation

  • Chen, Yuguo, 2012. "A theory for the multiset sampler," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 473-477.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:473-477
    DOI: 10.1016/j.spl.2011.09.025

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Leman, Scotland C. & Chen, Yuguo & Lavine, Michael, 2009. "The Multiset Sampler," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1029-1041.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:473-477. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.