IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A theory for the multiset sampler

  • Chen, Yuguo
Registered author(s):

    The multiset sampler (MSS) can be viewed as a new data augmentation scheme and it has been applied successfully to a wide range of statistical inference problems. The key idea of the MSS is to augment the system with a multiset of the missing components, and construct an appropriate joint distribution of the parameters of interest and the missing components to facilitate the inference based on Markov chain Monte Carlo. The standard data augmentation strategy corresponds to the MSS with multiset size one. This paper provides a theoretical comparison of the MSS with different multiset sizes. We show that the MSS converges to the target distribution faster as the multiset size increases. This explains the improvement in convergence rate for the MSS with large multiset sizes over the standard data augmentation scheme.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003695
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 3 ()
    Pages: 473-477

    as
    in new window

    Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:473-477
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Leman, Scotland C. & Chen, Yuguo & Lavine, Michael, 2009. "The Multiset Sampler," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1029-1041.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:473-477. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.