IDEAS home Printed from
   My bibliography  Save this article

A novel Univariate Marginal Distribution Algorithm based discretization algorithm


  • Zhao, Jing
  • Han, ChongZhao
  • Wei, Bin
  • Han, DeQiang


Many data mining algorithms can only deal with discrete data or have a better performance on discrete data; however, for some technological reasons often we can only obtain the continuous value in the real world. Therefore, discretization has played an important role in data mining. Discretization is defined as the process of mapping the continuous attribute space into the discrete space, namely, using integer values or symbols to represent the continuous spaces. In this paper, we proposed a discretization method on the basis of a Univariate Marginal Distribution Algorithm (UMDA). The UMDA is a combination of statistics learning theory and Evolution Algorithms. The fitness function of the UMDA not only took the accuracy of the classifier into account, but also the number of breakpoints. Experimental results showed that the algorithm proposed in this paper could effectively reduce the number of breakpoints, and at the same time, improve the accuracy of the classifier.

Suggested Citation

  • Zhao, Jing & Han, ChongZhao & Wei, Bin & Han, DeQiang, 2012. "A novel Univariate Marginal Distribution Algorithm based discretization algorithm," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2001-2007.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:11:p:2001-2007
    DOI: 10.1016/j.spl.2012.05.022

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:11:p:2001-2007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.