Selfdecomposability of moving average fractional Lévy processes
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jurek, Zbigniew J., 1983. "Limit distributions and one-parameter groups of linear operators on Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 13(4), pages 578-604, December.
- Sato, Ken-iti, 1980. "Class L of multivariate distributions and its subclasses," Journal of Multivariate Analysis, Elsevier, vol. 10(2), pages 207-232, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ole E. Barndorff-Nielsen & Orimar Sauri & Benedykt Szozda, 2017. "Selfdecomposable Fields," Journal of Theoretical Probability, Springer, vol. 30(1), pages 233-267, March.
- Jurek, Zbigniew J., 2013. "Invariant measures under random integral mappings and marginal distributions of fractional Lévy processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 177-183.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jurek, Zbigniew J., 2023. "Which Urbanik class Lk, do the hyperbolic and the generalized logistic characteristic functions belong to?," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
- Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
- Chi, Yichun & Yang, Jingping & Qi, Yongcheng, 2009. "Decomposition of a Schur-constant model and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 398-408, June.
- Akita, Koji & Maejima, Makoto, 2002. "On certain self-decomposable self-similar processes with independent increments," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 53-59, August.
- Rajba, Teresa, 2009. "Nested classes of C-semi-selfdecomposable distributions," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2469-2475, December.
- Maejima, Makoto & Sato, Ken-iti & Watanabe, Toshiro, 2000. "Distributions of selfsimilar and semi-selfsimilar processes with independent increments," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 395-401, May.
More about this item
Keywords
Infinite divisibility Selfdecomposability Moving average fractional Levy processes;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:11:p:1664-1669. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.