IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v69y2004i3p357-368.html
   My bibliography  Save this article

Refined Baum-Katz laws for weighted sums of iid random variables

Author

Listed:
  • Lanzinger, H.
  • Stadtmüller, U.

Abstract

We consider weighted sums with iid random variables (Xn) and compare the tail probabilities of these sums with the moment conditions on X1. If X1 is in the domain of attraction of a stable law then refined Baum-Katz laws generalizing results of Heyde, Gut and other authors are presented. Some special examples of weights pnk originating from summability are discussed.

Suggested Citation

  • Lanzinger, H. & Stadtmüller, U., 2004. "Refined Baum-Katz laws for weighted sums of iid random variables," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 357-368, September.
  • Handle: RePEc:eee:stapro:v:69:y:2004:i:3:p:357-368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00187-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Han-Ying, 2000. "Complete convergence for weighted sums of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 317-325, July.
    2. Liang, Han-Ying & Su, Chun, 1999. "Complete convergence for weighted sums of NA sequences," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 85-95, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fa-mei Zheng & Qing-pei Zang, 2015. "A general pattern of asymptotic behavior of the R/S statistics for linear processes," Statistical Papers, Springer, vol. 56(1), pages 191-204, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    2. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    3. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    4. Kuczmaszewska, Anna, 2009. "On complete convergence for arrays of rowwise negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 116-124, January.
    5. Yun-xia, Li & Li-xin, Zhang, 2004. "Complete moment convergence of moving-average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 191-197, December.
    6. Bing-Yi Jing & Han-Ying Liang, 2008. "Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables," Journal of Theoretical Probability, Springer, vol. 21(4), pages 890-909, December.
    7. Han-Ying Liang & Jong-Il Baek, 2008. "Berry–Esseen bounds for density estimates under NA assumption," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 305-322, November.
    8. Liang, Han-Ying, 2000. "Complete convergence for weighted sums of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 317-325, July.
    9. Kim, Tae-Sung & Ko, Mi-Hwa, 2008. "Complete moment convergence of moving average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 839-846, May.
    10. Etemadi, N., 2007. "Stability of weighted averages of 2-exchangeable random variables," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 389-395, February.
    11. Renyu Ye & Xinsheng Liu & Yuncai Yu, 2020. "Pointwise Optimality of Wavelet Density Estimation for Negatively Associated Biased Sample," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    12. Xuejun Wang & Chen Xu & Tien-Chung Hu & Andrei Volodin & Shuhe Hu, 2014. "On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 607-629, September.
    13. Yongsong Qin & Yinghua Li & Weizhen Yang & Qingzhu Lei, 2011. "Confidence intervals for nonparametric regression functions under negatively associated errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 645-659.
    14. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
    15. Qin, Yongsong & Li, Yinghua, 2011. "Empirical likelihood for linear models under negatively associated errors," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 153-163, January.
    16. Guo, Mingle & Zhu, Dongjin, 2013. "Equivalent conditions of complete moment convergence of weighted sums for ρ∗-mixing sequence of random variables," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:69:y:2004:i:3:p:357-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.