IDEAS home Printed from
   My bibliography  Save this article

Random walks on trees and the law of iterated logarithm


  • Konsowa, Mokhtar H.


In this paper we give an alternative proof for the main result of Konsowa and Mitro (J. Theor. Probab. 4 (3) (1991) 535), Konsowa and Mitro found that the simple random walk (SRW) on infinite trees is transient or recurrent. In part of their work, they considered the case of an -tree in which all the vertices of the same distance n from the root have the same degree which is 3 with probability qn and 2 with probability 1-qn. They proved that the SRW is transient if liminf nqn>1/log 2 and recurrent if limsup nqn

Suggested Citation

  • Konsowa, Mokhtar H., 2002. "Random walks on trees and the law of iterated logarithm," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 193-197, January.
  • Handle: RePEc:eee:stapro:v:56:y:2002:i:2:p:193-197

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Konsowa, Mokhtar H. & Oraby, Tamer F., 2003. "Dimensions of random trees," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 49-60, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:56:y:2002:i:2:p:193-197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.