IDEAS home Printed from
   My bibliography  Save this article

A parametric regression model of tumor recurrence: An application to the analysis of clinical data on breast cancer


  • Asselain, B.
  • Fourquet, A.
  • Hoang, T.
  • Tsodikov, A. D.
  • Yakovlev, A. Yu.


A new parametric model is proposed for the regression analysis of relapse-free time data. It offers a natural classification of covariates in terms of their predominant effect either on the expected number of clonogens in a treated tumor or on the time of tumor progression. Within the framework of the model, the probability of local control is uniquely determined by the mean number of surviving clonogenic cells. Two versions of the model are considered; in one of them every mode of treatment is represented by indicator variables while in the other version the linear-quadratic model of radiation cell survival is used to describe the effect of radiotherapy. Maximum likelihood estimation of the model parameters is provided by a nonlinear programming procedure which has been shown to be computationally tractable. The results are reported of the analysis of relevant data on breast cancer recurrence after conservative treatment of the primary tumor. The most striking finding is that age of a patient exerts a very strong effect on the mean number of surviving clonogens in the ipsilateral breast, or equivalently, the probability of tumor cure, while its effect on the progression time appears to be negligible. On the other hand, the primary tumor size contributes significantly to both characteristics of tumor latency. No significant covariate effects emerged from the analysis of the contralateral breast cancer recurrence.

Suggested Citation

  • Asselain, B. & Fourquet, A. & Hoang, T. & Tsodikov, A. D. & Yakovlev, A. Yu., 1996. "A parametric regression model of tumor recurrence: An application to the analysis of clinical data on breast cancer," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 271-278, September.
  • Handle: RePEc:eee:stapro:v:29:y:1996:i:3:p:271-278

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    2. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2002. "Bayesian Inference for Multivariate Survival Data with a Cure Fraction," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 101-126, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:29:y:1996:i:3:p:271-278. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.