IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A parametric regression model of tumor recurrence: An application to the analysis of clinical data on breast cancer

Listed author(s):
  • Asselain, B.
  • Fourquet, A.
  • Hoang, T.
  • Tsodikov, A. D.
  • Yakovlev, A. Yu.
Registered author(s):

    A new parametric model is proposed for the regression analysis of relapse-free time data. It offers a natural classification of covariates in terms of their predominant effect either on the expected number of clonogens in a treated tumor or on the time of tumor progression. Within the framework of the model, the probability of local control is uniquely determined by the mean number of surviving clonogenic cells. Two versions of the model are considered; in one of them every mode of treatment is represented by indicator variables while in the other version the linear-quadratic model of radiation cell survival is used to describe the effect of radiotherapy. Maximum likelihood estimation of the model parameters is provided by a nonlinear programming procedure which has been shown to be computationally tractable. The results are reported of the analysis of relevant data on breast cancer recurrence after conservative treatment of the primary tumor. The most striking finding is that age of a patient exerts a very strong effect on the mean number of surviving clonogens in the ipsilateral breast, or equivalently, the probability of tumor cure, while its effect on the progression time appears to be negligible. On the other hand, the primary tumor size contributes significantly to both characteristics of tumor latency. No significant covariate effects emerged from the analysis of the contralateral breast cancer recurrence.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 29 (1996)
    Issue (Month): 3 (September)
    Pages: 271-278

    in new window

    Handle: RePEc:eee:stapro:v:29:y:1996:i:3:p:271-278
    Contact details of provider: Web page:

    Order Information: Postal:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:29:y:1996:i:3:p:271-278. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.