IDEAS home Printed from
   My bibliography  Save this article

Optimized scorings for ordinal data for the general linear model


  • Gautam, Shiva
  • Kimeldorf, George
  • Sampson, Allan R.


There are a number of possible statistical procedures that can be used for analyzing ordinal categorical data collected in a designed experiment. In this paper we present an approach which allows us to do a preliminary examination of the data set to see whether or not the statistical results are sensitive to the choice of procedure. In our approach we start by considering analyzing ordinal categorical data collected in a designed experiment considered in the context of a general linear model with scores assigned to the ordinal categories. The standard F-statistics for testing linear hypotheses concerning model parameters are considered. Since the increasing scores can be chosen arbitarily, two sets of scores may potentially lead to opposing analytical and statistical conclusions. To deal with such concerns we optimize the F-statistics as functions of the scores assigned to the categories. For reference purpose we suggest using the F-distribution, although there is the usual caution if sample sizes are small. In two cases, namely, when the maximized F is nonsignificant, or when the minimized F is significant, all scores lead to the same conclusions, respectively, either rejecting or accepting H0. For example, in a one way lay-out with C treatments and K categories a nonsignificant maximum F indicates that there would be no significant treatment effect no matter what scores are used. Methods for computing the maximum and the minimum F-statistics are presented. The methods suggested in the paper are exemplified. The relationship between the F-statistics used for testing the treatment effect in one-way design and certain monotone correlations is also established.

Suggested Citation

  • Gautam, Shiva & Kimeldorf, George & Sampson, Allan R., 1996. "Optimized scorings for ordinal data for the general linear model," Statistics & Probability Letters, Elsevier, vol. 27(3), pages 231-239, April.
  • Handle: RePEc:eee:stapro:v:27:y:1996:i:3:p:231-239

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dembo, Amir & Zajic, Tim, 1995. "Large deviations: From empirical mean and measure to partial sums process," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 191-224, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Ordered categories F-statistic;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:27:y:1996:i:3:p:231-239. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.