IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v226y2025ics0167715225001269.html
   My bibliography  Save this article

Sampling random spanning arborescences in graphs with low conductance

Author

Listed:
  • Zampinetti, Vittorio
  • Melin, Harald
  • Lagergren, Jens

Abstract

Sampling random spanning arborescences in directed graphs is critical for applications in network analysis, optimization, and machine learning. While many state-of-the-art methods perform well on graphs with high conductance, they often fail or generalize poorly on low-conductance graphs. Inspired by Wilson’s algorithm, we propose a novel sampling approach that overcomes this limitation by using dynamic programming to compute random walk probabilities. This avoids both inefficient walk simulations and numerically unstable Laplacian determinant calculations. Our method demonstrates superior efficiency and sampling quality in simulations, and is the only one to handle low-conductance graphs effectively.

Suggested Citation

  • Zampinetti, Vittorio & Melin, Harald & Lagergren, Jens, 2025. "Sampling random spanning arborescences in graphs with low conductance," Statistics & Probability Letters, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001269
    DOI: 10.1016/j.spl.2025.110481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715225001269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2025.110481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.