IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v226y2025ics0167715225001051.html
   My bibliography  Save this article

Estimation of the generalized Laplace distribution and its projection onto the circle

Author

Listed:
  • Geraci, Marco

Abstract

The generalized Laplace (GL) distribution, which falls in the larger family of generalized hyperbolic distributions, provides a versatile model to deal with a variety of applications thanks to its shape parameters. The elliptically symmetric GL admits a polar representation that can be used to yield a circular distribution, which we call projected GL distribution. The latter does not appear to have been considered yet in practical applications. In this article, we explore an easy-to-implement maximum likelihood estimation strategy based on Gaussian quadrature for the scale-mixture representation of the GL and its projection onto the circle. A simulation study is carried out to benchmark the fitting routine against alternative estimation methods to assess its feasibility, while the projected GL model is contrasted with other popular circular distributions. A real data example is given in Supplementary Materials.

Suggested Citation

  • Geraci, Marco, 2025. "Estimation of the generalized Laplace distribution and its projection onto the circle," Statistics & Probability Letters, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001051
    DOI: 10.1016/j.spl.2025.110460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715225001051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2025.110460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.