IDEAS home Printed from
   My bibliography  Save this article

Expectiles and M-quantiles are quantiles


  • Jones, M. C.


Expectiles and M-quantiles are related to means and M-estimates of location in the same way as quantiles are related to the median. We show that expectiles and certain M-quantiles of a distribution F are precisely the ordinary quantiles of distributions G related by an explicit formula to F.

Suggested Citation

  • Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
  • Handle: RePEc:eee:stapro:v:20:y:1994:i:2:p:149-153

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    2. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    3. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    4. Stephan Stahlschmidt & Matthias Eckardt & Wolfgang K. Härdle, 2014. "Expectile Treatment Effects: An efficient alternative to compute the distribution of treatment effects," SFB 649 Discussion Papers SFB649DP2014-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Philipp Gschöpf & Wolfgang Karl Härdle & Andrija Mihoci, 2015. "TERES - Tail Event Risk Expectile based Shortfall," SFB 649 Discussion Papers SFB649DP2015-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. V. Masson & N. Sim & L. Wedding, 2014. "Did the AFL equalization policy achieve the evenness of the league?," Applied Economics, Taylor & Francis Journals, vol. 46(35), pages 4334-4344, December.
    7. Paolo Radaelli & Michele Zenga, 2008. "Quantity quantiles linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(4), pages 455-469, October.
    8. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    9. repec:bla:jorssb:v:80:y:2018:i:2:p:263-292 is not listed on IDEAS
    10. Bellini, Fabio, 2012. "Isotonicity properties of generalized quantiles," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2017-2024.
    11. Borgini, Riccardo & Bianco, Paola Del & Salvati, Nicola & Schmid, Timo & Tzavidis, Nikos, 2015. "Modelling the distribution of health related quality of life of advanced melanoma patients in a longitudinal multi-centre clinical trial using M-quantile random effects regression," Discussion Papers 2015/19, Free University Berlin, School of Business & Economics.
    12. Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
    13. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    14. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    15. Xiu Xu & Andrija Mihoci & Wolfgang Karl Härdle, "undated". "lCARE – localizing Conditional AutoRegressive Expectiles," SFB 649 Discussion Papers SFB649DP2015-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. repec:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0741-3 is not listed on IDEAS
    17. Mengmeng Guo & Wolfgang Härdle, 2012. "Simultaneous confidence bands for expectile functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 517-541, October.

    More about this item


    Asymmetric loss M-estimation;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:20:y:1994:i:2:p:149-153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.