IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v137y2018icp26-33.html
   My bibliography  Save this article

Uniform minimum moment aberration designs

Author

Listed:
  • Yang, Xue
  • Yang, Gui-Jun
  • Su, Ya-Juan

Abstract

This paper discusses the issue of constructing uniform minimum moment aberration designs under discrepancies criteria. By considering all possible level permutations of factors, we establish a linear relationship between power moments and average discrepancy defined by a reproducing kernel for an asymmetrical or symmetrical design. We prove that minimum moment aberration designs often have low average discrepancies. Moreover, the average centered L2-discrepancy is expressed as a linear combination of power moments for a given design. An efficient method for constructing uniform minimum moment aberration designs is proposed. Some asymmetrical uniform minimum moment aberration designs obtained by our method have low centered L2-discrepancy and can be recommended for use in practice.

Suggested Citation

  • Yang, Xue & Yang, Gui-Jun & Su, Ya-Juan, 2018. "Uniform minimum moment aberration designs," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 26-33.
  • Handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:26-33
    DOI: 10.1016/j.spl.2017.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218300026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashinath Chatterjee & Kai-Tai Fang & Hong Qin, 2006. "A Lower Bound for the Centered L 2 -Discrepancy on Asymmetric Factorials and its Application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(2), pages 243-255, April.
    2. Yang, Xue & Chen, Hao & Liu, Min-Qian, 2014. "Resolvable orthogonal array-based uniform sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 108-115.
    3. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. M. Elsawah, 2021. "Multiple doubling: a simple effective construction technique for optimal two-level experimental designs," Statistical Papers, Springer, vol. 62(6), pages 2923-2967, December.
    2. Bochuan Jiang & Yaping Wang & Mingyao Ai, 2022. "Search for minimum aberration designs with uniformity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 271-287, April.
    3. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    4. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.
    5. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.
    6. Bochuan Jiang & Fei Wang & Yaping Wang, 2022. "Construction of uniform mixed-level designs through level permutations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 753-770, August.
    7. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Liuping Hu & Zujun Ou & Hongyi Li, 2020. "Construction of four-level and mixed-level designs with zero Lee discrepancy," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 129-139, January.
    9. Zujun Ou & Minghui Zhang & Hongyi Li, 2023. "Triple Designs: A Closer Look from Indicator Function," Mathematics, MDPI, vol. 11(3), pages 1-12, February.
    10. Wang, Xiao-Lei & Zhao, Yu-Na & Yang, Jian-Feng & Liu, Min-Qian, 2017. "Construction of (nearly) orthogonal sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 174-180.
    11. Chen, Xue-Ping & Lin, Jin-Guan & Yang, Jian-Feng & Wang, Hong-Xia, 2015. "Construction of main-effect plans orthogonal through the block factor," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 58-64.
    12. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.
    13. Chatterjee, Kashinath & Li, Zhaohai & Qin, Hong, 2012. "Some new lower bounds to centered and wrap-round L2-discrepancies," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1367-1373.
    14. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    15. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    16. Chen, Wen & Qi, Zong-Feng & Zhou, Yong-Dao, 2015. "Constructing uniform designs under mixture discrepancy," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 76-82.
    17. Zujun Ou & Hong Qin, 2019. "Optimal foldover plans of asymmetric factorials with minimum wrap-around $$L_2$$ L 2 -discrepancy," Statistical Papers, Springer, vol. 60(5), pages 1699-1716, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:26-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.