IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Mixed Poisson approximation in the collective epidemic model

Listed author(s):
  • Lefèvre, Claude
  • Utev, Sergei
Registered author(s):

    The collective epidemic model is a quite flexible model that describes the spread of an infectious disease of the Susceptible-Infected-Removed type in a closed population. A statistic of great interest is the final number of susceptibles who survive the disease. In the present paper, a necessary and sufficient condition is derived that guarantees the weak convergence of the law of this variable to a mixed Poisson distribution when the initial susceptible population tends to infinity, provided that the outbreak is severe in a certain sense. New ideas in the proof are the exploitation of a stochastic convex order relation and the use of a weak convergence theorem for products of i.i.d. random variables.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 69 (1997)
    Issue (Month): 2 (September)
    Pages: 217-246

    in new window

    Handle: RePEc:eee:spapps:v:69:y:1997:i:2:p:217-246
    Contact details of provider: Web page:

    Order Information: Postal: http://

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:69:y:1997:i:2:p:217-246. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.