IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v40y1992i2p199-223.html
   My bibliography  Save this article

Some time change representations of stable integrals, via predictable transformations of local martingales

Author

Listed:
  • Kallenberg, Olav

Abstract

From the predictable reduction of a marked point process to Poisson, we derive a similar reduction theorem for purely discontinuous martingales to processes with independent increments. Both results are then used to examine the existence of stochastic integrals with respect to stable Lévy processes, and to prove a variety of time change representations for such integrals. The Knight phenomenon, where possibly dependent but orthogonal processes become independent after individual time changes, emerges as a general principle.

Suggested Citation

  • Kallenberg, Olav, 1992. "Some time change representations of stable integrals, via predictable transformations of local martingales," Stochastic Processes and their Applications, Elsevier, vol. 40(2), pages 199-223, March.
  • Handle: RePEc:eee:spapps:v:40:y:1992:i:2:p:199-223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(92)90012-F
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
    2. Shen, Leyi & Xia, Xiaoyu & Yan, Litan, 2022. "Least squares estimation for the linear self-repelling diffusion driven by α-stable motions," Statistics & Probability Letters, Elsevier, vol. 181(C).
    3. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2013. "Stationarity and ergodicity for an affine two factor model," Papers 1302.2534, arXiv.org, revised Sep 2013.
    4. Barndorff-Nielsen, Ole E. & Benth, Fred Espen & Pedersen, Jan & Veraart, Almut E.D., 2014. "On stochastic integration for volatility modulated Lévy-driven Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 812-847.
    5. Wiktorsson, Magnus, 2002. "Simulation of stochastic integrals with respect to Lévy processes of type G," Stochastic Processes and their Applications, Elsevier, vol. 101(1), pages 113-125, September.
    6. Mijatović, Aleksandar & Uribe Bravo, Gerónimo, 2022. "Limit theorems for local times and applications to SDEs with jumps," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 39-56.
    7. Zanzotto, P. A., 1997. "On solutions of one-dimensional stochastic differential equations driven by stable Lévy motion," Stochastic Processes and their Applications, Elsevier, vol. 68(2), pages 209-228, June.
    8. Hu, Yaozhong & Long, Hongwei, 2009. "Least squares estimator for Ornstein-Uhlenbeck processes driven by [alpha]-stable motions," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2465-2480, August.
    9. Zhang, Xuekang & Yi, Haoran & Shu, Huisheng, 2019. "Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 8-16.
    10. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    11. Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:40:y:1992:i:2:p:199-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.