IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v27y1987ip195-215.html
   My bibliography  Save this article

Convergence of continuous time stochastic ELS parameter estimation

Author

Listed:
  • Moore, John B.

Abstract

This paper presents continuous-time adaptive estimation schemes associated with a class of finite dimensional, time invariant, linear stochastic signal models. A global convergence theory is given for such schemes under a coloured noise/prefiller positive real condition, which may be side-stepped for moving average models. Attention is first focused on extended least squares (ELS) identification of stable signal models driven by bounded inputs. A particular feature is that weighting is introduced into the ELS scheme according to a stability measure. This weighting selection ensures that there is almost surely no finite escape time, and also there is improved transient performance in the presence of ill-conditioning. Next, some convergence results for least squares (LS) estimation of unstable signal models are extracted from the earlier theory. The ELS and LS theory suggests construction of identification schemes based on both ELS and LS. Analysis results for such are studied. The results apply within the indirect adaptive control context under reasonable controller design constraints, although details are not included in this paper.

Suggested Citation

  • Moore, John B., 1987. "Convergence of continuous time stochastic ELS parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 27, pages 195-215.
  • Handle: RePEc:eee:spapps:v:27:y:1987:i::p:195-215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(87)90038-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:27:y:1987:i::p:195-215. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.