IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v194y2026ics0304414925002972.html

Strong large deviation principles for pair empirical measures of random walks in the Mukherjee-Varadhan topology

Author

Listed:
  • Erhard, Dirk
  • Poisat, Julien

Abstract

In this paper we introduce a topology under which the pair empirical measure of a large class of random walks satisfies a strong Large Deviation principle. The definition of the topology is inspired by the recent article by Mukherjee and Varadhan [1]. This topology is natural for translation-invariant problems such as the downward deviations of the volume of a Wiener sausage or simple random walk, known as the Swiss cheese model [2]. We also adapt our result to some rescaled random walks and provide a contraction principle to the single empirical measure despite a lack of continuity from the projection map, using the notion of diagonal tightness.

Suggested Citation

  • Erhard, Dirk & Poisat, Julien, 2026. "Strong large deviation principles for pair empirical measures of random walks in the Mukherjee-Varadhan topology," Stochastic Processes and their Applications, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:spapps:v:194:y:2026:i:c:s0304414925002972
    DOI: 10.1016/j.spa.2025.104853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925002972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:194:y:2026:i:c:s0304414925002972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.