IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v192y2026ics0304414925002509.html

Guided smoothing and control for diffusion processes

Author

Listed:
  • Eklund, Oskar
  • Lang, Annika
  • Schauer, Moritz

Abstract

The smoothing distribution is the conditional distribution of the diffusion process in the space of trajectories given noisy observations made continuously in time. It is generally difficult to sample from this distribution. We use the theory of enlargement of filtrations to show that the conditional process has an additional drift term derived from the backward filtering distribution that is moving or guiding the process towards the observations. This term is intractable, but its effect can be equally introduced by replacing it with a heuristic, where importance weights correct for the discrepancy. From this Markov Chain Monte Carlo and sequential Monte Carlo algorithms are derived to sample from the smoothing distribution. The choice of the guiding heuristic is discussed from an optimal control perspective and evaluated. The results are tested numerically on a stochastic differential equation for reaction–diffusion.

Suggested Citation

  • Eklund, Oskar & Lang, Annika & Schauer, Moritz, 2026. "Guided smoothing and control for diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:spapps:v:192:y:2026:i:c:s0304414925002509
    DOI: 10.1016/j.spa.2025.104806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925002509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:192:y:2026:i:c:s0304414925002509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.