IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v192y2026ics0304414925002479.html

Transition of α-mixing in random iterations with applications in queuing theory

Author

Listed:
  • Lovas, Attila

Abstract

Nonlinear time series models with exogenous regressors are essential in econometrics, queuing theory, and machine learning, though their statistical analysis remains incomplete. Key results, such as the law of large numbers and the functional central limit theorem, are known for weakly dependent variables. We demonstrate the transfer of mixing properties from the exogenous regressor to the response via coupling arguments. Additionally, we study Markov chains in random environments with drift and minorization conditions, even under non-stationary environments with favorable mixing properties, and apply this framework to single-server queuing models.

Suggested Citation

  • Lovas, Attila, 2026. "Transition of α-mixing in random iterations with applications in queuing theory," Stochastic Processes and their Applications, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:spapps:v:192:y:2026:i:c:s0304414925002479
    DOI: 10.1016/j.spa.2025.104803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925002479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:192:y:2026:i:c:s0304414925002479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.