IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v191y2026ics030441492500225x.html

Holomorphic jump-diffusions

Author

Listed:
  • Cuchiero, Christa
  • Primavera, Francesca
  • Svaluto-Ferro, Sara

Abstract

We introduce a class of jump-diffusions, called holomorphic, of which the well-known classes of affine and polynomial processes are particular instances. The defining property concerns the extended generator, which is required to map a (subset of) holomorphic functions to themselves. This leads to a representation of the expectation of power series of the process’ marginals via a potentially infinite dimensional linear ODE. We apply the same procedure by considering exponentials of holomorphic functions, leading to a class of processes named affine-holomorphic for which a representation for quantities as the characteristic function of power series is provided. Relying on powerful results from complex analysis, we obtain sufficient conditions on the process’ characteristics which guarantee the holomorphic and affine-holomorphic properties and provide applications to several classes of jump-diffusions.

Suggested Citation

  • Cuchiero, Christa & Primavera, Francesca & Svaluto-Ferro, Sara, 2026. "Holomorphic jump-diffusions," Stochastic Processes and their Applications, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:spapps:v:191:y:2026:i:c:s030441492500225x
    DOI: 10.1016/j.spa.2025.104781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492500225X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:191:y:2026:i:c:s030441492500225x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.