IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v190y2025ics030441492500211x.html

Central limit theorems associated with the hierarchical Dirichlet process

Author

Listed:
  • Feng, Shui
  • Paguyo, J.E.

Abstract

The hierarchical Dirichlet process is a discrete random measure used as a prior in Bayesian nonparametrics and motivated by the study of groups of clustered data. We study the asymptotic behavior of the power sum symmetric polynomials for the vector of weights of the hierarchical Dirichlet process as the concentration parameters tend to infinity. We establish central limit theorems and obtain explicit representations for the asymptotic variances, with the latter clearly showing the impact of the hierarchical structure. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl–Hirschman index in economics.

Suggested Citation

  • Feng, Shui & Paguyo, J.E., 2025. "Central limit theorems associated with the hierarchical Dirichlet process," Stochastic Processes and their Applications, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:spapps:v:190:y:2025:i:c:s030441492500211x
    DOI: 10.1016/j.spa.2025.104767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492500211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:190:y:2025:i:c:s030441492500211x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.