Author
Listed:
- Li, Yao
- Tao, Molei
- Wang, Shirou
Abstract
This paper proposes a probabilistic approach to investigate the shape of landscapes of multi-dimensional potential functions. Under a suitable coupling scheme, two copies of the overdamped Langevin dynamics associated with the potential function are coupled, and the coupling times are collected. Assuming a set of intuitive yet technically challenging conditions on the coupling scheme, it is shown that the tail distributions of the coupling times exhibit qualitatively different dependencies on the noise magnitude for single-well versus multi-well potential functions. More specifically, for convex single-well potentials, the negative tail exponent of the coupling time distribution is uniformly bounded away from zero by the convexity parameter and is independent of the noise magnitude. In contrast, for multi-well potentials, the negative tail exponent decreases exponentially as the noise vanishes, with the decay rate governed by the essential barrier height, a quantity introduced in this paper to characterize the non-convex nature of the potential function. Numerical investigations are conducted for a variety of examples, including the Rosenbrock function, interacting particle systems, and loss functions arising in artificial neural networks. These examples not only illustrate the theoretical results in various contexts but also provide crucial numerical validation of the conjectured assumptions, which are essential to the theoretical analysis yet lie beyond the reach of standard technical tools.
Suggested Citation
Li, Yao & Tao, Molei & Wang, Shirou, 2025.
"Essential barrier height and a probabilistic approach in characterizing potential landscape,"
Stochastic Processes and their Applications, Elsevier, vol. 190(C).
Handle:
RePEc:eee:spapps:v:190:y:2025:i:c:s0304414925002078
DOI: 10.1016/j.spa.2025.104763
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:190:y:2025:i:c:s0304414925002078. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.