IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v190y2025ics0304414925002066.html

Emergence of multivariate extremes in multilayer inhomogeneous random graphs

Author

Listed:
  • Cirkovic, Daniel
  • Wang, Tiandong
  • Cline, Daren B.H.

Abstract

In this paper we develop a multilayer inhomogeneous random graph model (MIRG). Layers of the MIRG may consist of both single-edge and multi-edge graphs. In the single layer case, it has been shown that the regular variation of the weight distribution underlying the inhomogeneous random graph implies the regular variation of the typical degree distribution. We extend this correspondence to the multilayer case by showing that multivariate regular variation of the weight distribution implies multivariate regular variation of the asymptotic degree distribution. Furthermore, under suitable assumptions, the extremal dependence structure present in the weight distribution will be adopted by the asymptotic degree distribution. By considering the asymptotic degree distribution, a wider class of Chung–Lu and Norros–Reittu graphs may be incorporated into the MIRG layers. Additionally, we prove consistency of the Hill estimator when applied to degrees of the MIRG that have a tail index greater than 1. Simulation results indicate that, in practice, hidden regular variation may be consistently detected from an observed MIRG. Finally, we analyze user interactions on Reddit and observe that they exhibit properties of the MIRG.

Suggested Citation

  • Cirkovic, Daniel & Wang, Tiandong & Cline, Daren B.H., 2025. "Emergence of multivariate extremes in multilayer inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:spapps:v:190:y:2025:i:c:s0304414925002066
    DOI: 10.1016/j.spa.2025.104762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925002066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:190:y:2025:i:c:s0304414925002066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.