IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v187y2025ics0304414925000924.html

On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space

Author

Listed:
  • Geiss, Stefan
  • Thuan, Nguyen Tran

Abstract

We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.

Suggested Citation

  • Geiss, Stefan & Thuan, Nguyen Tran, 2025. "On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:spapps:v:187:y:2025:i:c:s0304414925000924
    DOI: 10.1016/j.spa.2025.104651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Martin Schweizer & Christophe Stricker & Freddy Delbaen & Pascale Monat & Walter Schachermayer, 1997. "Weighted norm inequalities and hedging in incomplete markets," Finance and Stochastics, Springer, vol. 1(3), pages 181-227.
    2. Geiss, Stefan & Ylinen, Juha, 2020. "Weighted bounded mean oscillation applied to backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3711-3752.
    3. Laukkarinen, Eija, 2020. "Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4766-4792.
    4. Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    2. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    3. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.
    4. Mats Brod'en & Magnus Wiktorsson, 2010. "Hedging Errors Induced by Discrete Trading Under an Adaptive Trading Strategy," Papers 1004.4526, arXiv.org.
    5. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    6. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    7. Stephane Goutte & Armand Ngoupeyou, 2012. "Optimization problem and mean variance hedging on defaultable claims," Papers 1209.5953, arXiv.org.
    8. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    9. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    10. Schweizer, Martin, 2001. "From actuarial to financial valuation principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 31-47, February.
    11. M. Mania & R. Tevzadze & T. Toronjadze, 2007. "$L^2$-approximating pricing under restricted information," Papers 0708.4095, arXiv.org.
    12. Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
    13. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    14. Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
    15. Arai, Takuji, 2005. "Some properties of the variance-optimal martingale measure for discontinuous semimartingales," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 163-170, September.
    16. Bayraktar, Erhan & Kravitz, Ross, 2013. "Stability of exponential utility maximization with respect to market perturbations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1671-1690.
    17. Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
    18. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2018. "Stability results for martingale representations: the general case," Papers 1806.01172, arXiv.org, revised Mar 2019.
    19. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Jan 2026.
    20. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:187:y:2025:i:c:s0304414925000924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.