IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v183y2025ics0304414925000419.html
   My bibliography  Save this article

Symmetry and functional inequalities for stable Lévy-type operators

Author

Listed:
  • Huang, Lu-Jing
  • Wang, Tao

Abstract

In this paper, we establish the sufficient and necessary conditions for the symmetry of the following stable Lévy-type operator L on R: L=a(x)Δα/2+b(x)ddx,where a is a continuous and strictly positive function, and b is a differentiable function. We then study the criteria for functional inequalities, such as logarithmic Sobolev inequalities, Nash inequalities and super-Poincaré inequalities under the assumption of symmetry. Our approach involves the Orlicz space theory and the estimates of the Green functions.

Suggested Citation

  • Huang, Lu-Jing & Wang, Tao, 2025. "Symmetry and functional inequalities for stable Lévy-type operators," Stochastic Processes and their Applications, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000419
    DOI: 10.1016/j.spa.2025.104600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng-Yu Wang & Jian Wang, 2015. "Functional Inequalities for Stable-Like Dirichlet Forms," Journal of Theoretical Probability, Springer, vol. 28(2), pages 423-448, June.
    2. Chen, Zhen-Qing & Wang, Jian, 2014. "Ergodicity for time-changed symmetric stable processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2799-2823.
    3. Döring, Leif & Kyprianou, Andreas E. & Weissmann, Philip, 2020. "Stable processes conditioned to avoid an interval," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 471-487.
    4. Chen, Xin & Wang, Jian, 2014. "Functional inequalities for nonlocal Dirichlet forms with finite range jumps or large jumps," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 123-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Chen & Jian Wang, 2017. "Weighted Poincaré Inequalities for Non-local Dirichlet Forms," Journal of Theoretical Probability, Springer, vol. 30(2), pages 452-489, June.
    2. Jian Wang, 2019. "Compactness and Density Estimates for Weighted Fractional Heat Semigroups," Journal of Theoretical Probability, Springer, vol. 32(4), pages 2066-2087, December.
    3. Huang, Lu-Jing & Wang, Tao, 2023. "Dirichlet eigenvalues and exit time moments for symmetric Markov processes," Statistics & Probability Letters, Elsevier, vol. 193(C).
    4. Chen, Zhen-Qing & Wang, Jian, 2014. "Ergodicity for time-changed symmetric stable processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2799-2823.
    5. Peng Chen & Xinghu Jin & Tian Shen & Zhonggen Su, 2024. "Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1597-1626, June.
    6. Xinghu Jin & Tian Shen & Zhonggen Su, 2023. "Using Stein’s Method to Analyze Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1797-1828, September.
    7. Yong-Hua Mao & Tao Wang, 2022. "Convergence Rates in Uniform Ergodicity by Hitting Times and $$L^2$$ L 2 -Exponential Convergence Rates," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2690-2711, December.
    8. Wang, Tao, 2022. "Ergodic convergence rates for time-changed symmetric Lévy processes in dimension one," Statistics & Probability Letters, Elsevier, vol. 183(C).
    9. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.