Self-switching random walks on Erdös–Rényi random graphs feel the phase transition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2025.104589
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Garcia, Nancy Lopes & Palacios, José Luis, 2001. "On inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 235-239, June.
- Matthias Löwe & Sara Terveer, 2023. "A Central Limit Theorem for the Mean Starting Hitting Time for a Random Walk on a Random Graph," Journal of Theoretical Probability, Springer, vol. 36(2), pages 779-810, June.
- Gallo, S. & Iacobelli, G. & Ost, G. & Takahashi, D.Y., 2022. "Self-Switching Markov Chains: Emerging dominance phenomena," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 254-284.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cribari-Neto, Francisco & Garcia, Nancy Lopes & Vasconcellos, Klaus L. P., 2000. "A Note on Inverse Moments of Binomial Variates," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 20(2), November.
- Kaluszka, M. & Okolewski, A., 2004. "On Fatou-type lemma for monotone moments of weakly convergent random variables," Statistics & Probability Letters, Elsevier, vol. 66(1), pages 45-50, January.
- Wu, Tiee-Jian & Shi, Xiaoping & Miao, Baiqi, 2009. "Asymptotic approximation of inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1366-1371, June.
- Daniel A. Griffith, 2022. "Reciprocal Data Transformations and Their Back-Transforms," Stats, MDPI, vol. 5(3), pages 1-24, July.
- Shi, Xiaoping & Wu, Yuehua & Liu, Yu, 2010. "A note on asymptotic approximations of inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1260-1264, August.
- Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
- Wang, Xuejun & Hu, Shuhe & Yang, Wenzhi & Ling, Nengxiang, 2010. "Exponential inequalities and inverse moment for NOD sequence," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 452-461, March.
More about this item
Keywords
Random graphs; Phase transition; Random walks; Self-switching Markov chains;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:183:y:2025:i:c:s0304414925000304. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.