Some remarks on the effect of the Random Batch Method on phase transition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2024.104498
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiaojie Ding & Huijie Qiao, 2021. "Euler–Maruyama Approximations for Stochastic McKean–Vlasov Equations with Non-Lipschitz Coefficients," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1408-1425, September.
- Herrmann, S. & Tugaut, J., 2010. "Non-uniqueness of stationary measures for self-stabilizing processes," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1215-1246, July.
- Collet, Francesca & Kraaij, Richard C., 2017. "Dynamical moderate deviations for the Curie–Weiss model," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2900-2925.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
- Alexander Kalinin & Thilo Meyer-Brandis & Frank Proske, 2024. "Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2941-2989, November.
- Bashiri, K. & Menz, G., 2021. "Metastability in a continuous mean-field model at low temperature and strong interaction," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 132-173.
- Kraaij, Richard C. & Redig, Frank & Versendaal, Rik, 2019. "Classical large deviation theorems on complete Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4294-4334.
- Julian Tugaut, 2014. "Self-stabilizing Processes in Multi-wells Landscape in ℝ d -Invariant Probabilities," Journal of Theoretical Probability, Springer, vol. 27(1), pages 57-79, March.
More about this item
Keywords
Interacting particle system; Curie–Weiss model; Phase transition; Random Batch Method; McKean–Vlasov diffusion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002060. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.