IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v15y1983i2p133-154.html
   My bibliography  Save this article

A physical basis for Krein's prediction formula

Author

Listed:
  • Anderson, Brian D. O.

Abstract

A prediction problem of the following variety is considered. A stationary random process w(·) of known spectrum is observed over t[less-than-or-equals, slant]a. Using these observed values, w(b) is to be predicted for some b with b>a. We present a physical interpretation of a solution to this problem due to Krein, which used the theory of inverse Sturm-Liouville problems. Our physical model involves a nonuniform lossless transmission line excited at one end by white noise. The signal at the other end is the process w(t), and the prediction is found by calculating as intermediate quantities the voltage and current stored on the line at t=0. These quantities are spatially uncorrelated and provide a spatial representation at t=0 of the innovations of w(t) over t[less-than-or-equals, slant]a.

Suggested Citation

  • Anderson, Brian D. O., 1983. "A physical basis for Krein's prediction formula," Stochastic Processes and their Applications, Elsevier, vol. 15(2), pages 133-154, July.
  • Handle: RePEc:eee:spapps:v:15:y:1983:i:2:p:133-154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(83)90052-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:15:y:1983:i:2:p:133-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.