IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v134y2021icp174-207.html
   My bibliography  Save this article

Drift estimation on non compact support for diffusion models

Author

Listed:
  • Comte, Fabienne
  • Genon-Catalot, Valentine

Abstract

We study non parametric drift estimation for an ergodic diffusion process from discrete observations. The drift is estimated on a set A using an approximate regression equation by a least squares contrast, minimized over finite dimensional subspaces of L2(A,dx). The novelty is that the set A is non compact and the diffusion coefficient unbounded. Risk bounds of a L2-risk are provided where new variance terms are exhibited. A data-driven selection procedure is proposed where the dimension of the projection space is chosen within a random set contrary to usual selection procedures.

Suggested Citation

  • Comte, Fabienne & Genon-Catalot, Valentine, 2021. "Drift estimation on non compact support for diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 174-207.
  • Handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:174-207
    DOI: 10.1016/j.spa.2021.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921000016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabienne Comte & Charles-A. Cuenod & Marianna Pensky & Yves Rozenholc, 2017. "Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 69-94, January.
    2. Gwennaëlle Mabon, 2017. "Adaptive Deconvolution on the Non-negative Real Line," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 707-740, September.
    3. F. Comte & V. Genon-Catalot, 2020. "Regression function estimation on non compact support in an heteroscesdastic model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 93-128, January.
    4. Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
    5. F. Comte & V. Genon-Catalot, 2020. "Regression function estimation as a partly inverse problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1023-1054, August.
    6. Strauch, Claudia, 2015. "Sharp adaptive drift estimation for ergodic diffusions: The multivariate case," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2562-2602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eddy Ella-Mintsa, 2024. "Nonparametric estimation of the diffusion coefficient from i.i.d. S.D.E. paths," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 585-640, October.
    2. Nicolas Marie, 2023. "Nonparametric estimation for i.i.d. paths of a martingale-driven model with application to non-autonomous financial models," Finance and Stochastics, Springer, vol. 27(1), pages 97-126, January.
    3. Comte, Fabienne & Marie, Nicolas, 2023. "Nonparametric drift estimation from diffusions with correlated Brownian motions," Journal of Multivariate Analysis, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Marie, 2023. "Nonparametric estimation for i.i.d. paths of a martingale-driven model with application to non-autonomous financial models," Finance and Stochastics, Springer, vol. 27(1), pages 97-126, January.
    2. Wooyong Lee & Priscilla E. Greenwood & Nancy Heckman & Wolfgang Wefelmeyer, 2017. "Pre-averaged kernel estimators for the drift function of a diffusion process in the presence of microstructure noise," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 237-252, July.
    3. F. Comte & V. Genon-Catalot, 2020. "Regression function estimation as a partly inverse problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1023-1054, August.
    4. Eddy Ella-Mintsa, 2024. "Nonparametric estimation of the diffusion coefficient from i.i.d. S.D.E. paths," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 585-640, October.
    5. Florian Dussap, 2023. "Nonparametric multiple regression by projection on non-compactly supported bases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 731-771, October.
    6. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    7. Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
    8. Denis Belomestny & Fabienne Comte & Valentine Genon-Catalot, 2019. "Sobolev-Hermite versus Sobolev nonparametric density estimation on $${\mathbb {R}}$$ R," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 29-62, February.
    9. Charlotte Dion, 2016. "Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 919-951, November.
    10. Schmisser Emeline, 2011. "Non-parametric drift estimation for diffusions from noisy data," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 119-150, May.
    11. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    12. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    13. Fabian Dunker & Thorsten Hohage, 2014. "On parameter identification in stochastic differential equations by penalized maximum likelihood," Papers 1404.0651, arXiv.org.
    14. Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
    15. Christian Gourieroux & Hung T. Nguyen & Songsak Sriboonchitta, 2017. "Nonparametric estimation of a scalar diffusion model from discrete time data: a survey," Annals of Operations Research, Springer, vol. 256(2), pages 203-219, September.
    16. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    17. Comte, Fabienne & Marie, Nicolas, 2023. "Nonparametric drift estimation from diffusions with correlated Brownian motions," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    18. Helle Sørensen, 2002. "Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey," Discussion Papers 02-08, University of Copenhagen. Department of Economics.
    19. Ignatieva, Katja & Platen, Eckhard, 2012. "Estimating the diffusion coefficient function for a diversified world stock index," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1333-1349.
    20. Hoffmann, Marc, 1999. "On nonparametric estimation in nonlinear AR(1)-models," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 29-45, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:174-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.