IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i9p3118-3180.html

Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs

Author

Listed:
  • Li, Juan

Abstract

In this paper we consider a mean-field backward stochastic differential equation (BSDE) driven by a Brownian motion and an independent Poisson random measure. Translating the splitting method introduced by Buckdahn et al. (2014) to BSDEs, the existence and the uniqueness of the solution (Yt,ξ,Zt,ξ,Ht,ξ), (Yt,x,Pξ,Zt,x,Pξ,Ht,x,Pξ) of the split equations are proved. The first and the second order derivatives of the process (Yt,x,Pξ,Zt,x,Pξ,Ht,x,Pξ) with respect to x, the derivative of the process (Yt,x,Pξ,Zt,x,Pξ,Ht,x,Pξ) with respect to the measure Pξ, and the derivative of the process (∂μYt,x,Pξ(y),∂μZt,x,Pξ(y),∂μHt,x,Pξ(y)) with respect to y are studied under appropriate regularity assumptions on the coefficients, respectively. These derivatives turn out to be bounded and continuous in L2. The proof of the continuity of the second order derivatives is particularly involved and requires subtle estimates. This regularity ensures that the value function V(t,x,Pξ)≔Ytt,x,Pξ is regular and allows to show with the help of a new Itô formula that it is the unique classical solution of the related nonlocal quasi-linear integral-partial differential equation (PDE) of mean-field type.

Suggested Citation

  • Li, Juan, 2018. "Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3118-3180.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:9:p:3118-3180
    DOI: 10.1016/j.spa.2017.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tao Hao & Juan Li, 2014. "Backward Stochastic Differential Equations Coupled with Value Function and Related Optimal Control Problems," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-17, March.
    2. Buckdahn, Rainer & Li, Juan & Peng, Shige, 2009. "Mean-field backward stochastic differential equations and related partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3133-3154, October.
    3. Li, Juan & Wei, Qingmeng, 2014. "Lp estimates for fully coupled FBSDEs with jumps," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1582-1611.
    4. Hui Min & Ying Peng & Yongli Qin, 2014. "Fully Coupled Mean-Field Forward-Backward Stochastic Differential Equations and Stochastic Maximum Principle," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-15, April.
    5. Buckdahn, Rainer & Hu, Ying & Li, Juan, 2011. "Stochastic representation for solutions of Isaacs’ type integral–partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2715-2750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ang Ke & Jinbiao Wu & Biteng Xu, 2025. "Optimal Strategy of Mean-Field FBSDE Games with Delay and Noisy Memory Based on Malliavin Calculus," Dynamic Games and Applications, Springer, vol. 15(3), pages 906-946, July.
    2. Xiaoli Wei & Xiang Yu & Fengyi Yuan, 2024. "Unified continuous-time q-learning for mean-field game and mean-field control problems," Papers 2407.04521, arXiv.org, revised Mar 2025.
    3. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    4. Buckdahn, Rainer & Chen, Yajie & Li, Juan, 2021. "Partial derivative with respect to the measure and its application to general controlled mean-field systems," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 265-307.
    5. Qian, Hongchao, 2025. "Mean reflected backward stochastic differential equations with jumps in a convex domain," Statistics & Probability Letters, Elsevier, vol. 223(C).
    6. Fan, Xiliang & Huang, Xing & Suo, Yongqiang & Yuan, Chenggui, 2022. "Distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 23-67.
    7. Guo, Xin & Pham, Huyên & Wei, Xiaoli, 2023. "Itô’s formula for flows of measures on semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 350-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Sheng & Li, Wenqiang & Li, Xun & Wei, Qingmeng, 2025. "Stochastic representation for solutions of a system of coupled HJB-Isaacs equations with integral–differential operators," Stochastic Processes and their Applications, Elsevier, vol. 179(C).
    2. Sun, Shengqiu, 2025. "Mean-field forward–backward stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 223(C).
    3. Ren'e Aid & Andrea Cosso & Huy^en Pham, 2020. "Equilibrium price in intraday electricity markets," Papers 2010.09285, arXiv.org.
    4. Yu, Xianye & Zhang, Mingbo, 2020. "Backward stochastic differential equations driven by fractional noise with non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 159(C).
    5. Li, Hanwu, 2024. "Backward stochastic differential equations with double mean reflections," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    6. Wu, Zhen & Xu, Ruimin, 2019. "Probabilistic interpretation for Sobolev solutions of McKean–Vlasov partial differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 273-283.
    7. Fu, Zongkui & Fei, Dandan, 2025. "General mean-field reflected backward stochastic differential equations with locally monotone coefficients," Statistics & Probability Letters, Elsevier, vol. 216(C).
    8. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    9. Buckdahn, Rainer & Chen, Yajie & Li, Juan, 2021. "Partial derivative with respect to the measure and its application to general controlled mean-field systems," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 265-307.
    10. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.
    11. G. Saranya & R. Deepa & P. Muthukumar, 2025. "Pareto Optimal Cooperative Control of Mean-Field Backward Stochastic Differential System in Finite Horizon," Dynamic Games and Applications, Springer, vol. 15(1), pages 279-305, March.
    12. Klimsiak, Tomasz & Rzymowski, Maurycy, 2023. "Nonlinear BSDEs on a general filtration with drivers depending on the martingale part of the solution," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 424-450.
    13. Qun Shi, 2021. "Generalized Mean-Field Fractional BSDEs With Non-Lipschitz Coefficients," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-77, June.
    14. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.
    15. Wei Zhang & Hui Min, 2023. "$$L^p$$ L p -Error Estimates for Numerical Schemes for Solving Certain Kinds of Mean-Field Backward Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(2), pages 762-778, June.
    16. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    17. Vassili Kolokoltsov & Marianna Troeva & Wei Yang, 2014. "On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players," Dynamic Games and Applications, Springer, vol. 4(2), pages 208-230, June.
    18. Alexander Kalinin & Thilo Meyer-Brandis & Frank Proske, 2024. "Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2941-2989, November.
    19. Roxana Dumitrescu & Bernt Øksendal & Agnès Sulem, 2018. "Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 559-584, March.
    20. Briand, Philippe & Cardaliaguet, Pierre & Chaudru de Raynal, Paul-Éric & Hu, Ying, 2020. "Forward and backward stochastic differential equations with normal constraints in law," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7021-7097.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:9:p:3118-3180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.