IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i1p156-181.html
   My bibliography  Save this article

Ergodic properties of generalized Ornstein–Uhlenbeck processes

Author

Listed:
  • Kevei, Péter

Abstract

We investigate ergodic properties of the solution of the SDE dVt=Vt−dUt+dLt, where (U,L) is a bivariate Lévy process. This class of processes includes the generalized Ornstein–Uhlenbeck processes. We provide sufficient conditions for ergodicity, and for subexponential and exponential convergence to the invariant probability measure. We use the Foster–Lyapunov method. The drift conditions are obtained using the explicit form of the generator of the continuous process. In some special cases the optimality of our results can be shown.

Suggested Citation

  • Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:156-181
    DOI: 10.1016/j.spa.2017.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behme, Anita & Lindner, Alexander & Maller, Ross, 2011. "Stationary solutions of the stochastic differential equation with Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 91-108, January.
    2. Nummelin, Esa & Tuominen, Pekka, 1982. "Geometric ergodicity of Harris recurrent Marcov chains with applications to renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 12(2), pages 187-202, March.
    3. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
    4. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    5. de Haan, L. & Karandikar, R. L., 1989. "Embedding a stochastic difference equation into a continuous-time process," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 225-235, August.
    6. Kulik, Alexey M., 2009. "Exponential ergodicity of the solutions to SDE's with a jump noise," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 602-632, February.
    7. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
    2. Bertoin, Jean, 2019. "Ergodic aspects of some Ornstein–Uhlenbeck type processes related to Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1443-1454.
    3. Behme, Anita & Di Tella, Paolo & Sideris, Apostolos, 2024. "On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behme, Anita & Lindner, Alexander, 2012. "Multivariate generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1487-1518.
    2. Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
    3. Behme, Anita & Lindner, Alexander & Reker, Jana & Rivero, Victor, 2021. "Continuity properties and the support of killed exponential functionals," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 115-146.
    4. Brandes, Dirk-Philip & Lindner, Alexander, 2014. "Non-causal strictly stationary solutions of random recurrence equations," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 113-118.
    5. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    6. Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
    7. Oleksii Kulyk, 2023. "Support Theorem for Lévy-driven Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1720-1742, September.
    8. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    9. E. Löcherbach, 2020. "Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2280-2314, December.
    10. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    11. Bankovsky, Damien, 2010. "Conditions for certain ruin for the generalised Ornstein-Uhlenbeck process and the structure of the upper and lower bounds," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 255-280, February.
    12. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    13. Kulik, Alexei & Pavlyukevich, Ilya, 2021. "Moment bounds for dissipative semimartingales with heavy jumps," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 274-308.
    14. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    15. Ditlevsen, Susanne & Löcherbach, Eva, 2017. "Multi-class oscillating systems of interacting neurons," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1840-1869.
    16. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    17. Guodong Pang & Andrey Sarantsev & Yana Belopolskaya & Yuri Suhov, 2020. "Stationary distributions and convergence for M/M/1 queues in interactive random environment," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 357-392, April.
    18. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    19. Barndorff-Nielsen, Ole E. & Maejima, Makoto, 2008. "Semigroups of Upsilon transformations," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2334-2343, December.
    20. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:156-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.