IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i2p523-560.html
   My bibliography  Save this article

Large deviations for stochastic partial differential equations driven by a Poisson random measure

Author

Listed:
  • Budhiraja, Amarjit
  • Chen, Jiang
  • Dupuis, Paul

Abstract

Stochastic partial differential equations driven by Poisson random measures (PRMs) have been proposed as models for many different physical systems, where they are viewed as a refinement of a corresponding noiseless partial differential equation (PDE). A systematic framework for the study of probabilities of deviations of the stochastic PDE from the deterministic PDE is through the theory of large deviations. The goal of this work is to develop the large deviation theory for small Poisson noise perturbations of a general class of deterministic infinite dimensional models. Although the analogous questions for finite dimensional systems have been well studied, there are currently no general results in the infinite dimensional setting. This is in part due to the fact that in this setting solutions may have little spatial regularity, and thus classical approximation methods for large deviation analysis become intractable. The approach taken here, which is based on a variational representation for nonnegative functionals of general PRMs, reduces the proof of the large deviation principle to establishing basic qualitative properties for controlled analogues of the underlying stochastic system. As an illustration of the general theory, we consider a particular system that models the spread of a pollutant in a waterway.

Suggested Citation

  • Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:2:p:523-560
    DOI: 10.1016/j.spa.2012.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912002116
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Acosta, A., 1994. "Large deviations for vector-valued Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 75-115, June.
    2. Duan, Jinqiao & Millet, Annie, 2009. "Large deviations for the Boussinesq equations under random influences," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2052-2081, June.
    3. Sritharan, S.S. & Sundar, P., 2006. "Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1636-1659, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:stapro:v:126:y:2017:i:c:p:97-107 is not listed on IDEAS
    2. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    3. repec:eee:spapps:v:127:y:2017:i:11:p:3792-3824 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:2:p:523-560. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.