IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i6p2454-2479.html
   My bibliography  Save this article

Some properties of the Itô–Wiener expansion of the solution of a stochastic differential equation and local times

Author

Listed:
  • Rudenko, Alexey

Abstract

In this paper, we use the formula for the Itô–Wiener expansion of the solution of the stochastic differential equation proven by Krylov and Veretennikov to obtain several results concerning some properties of this expansion. Our main goal is to study the Itô–Wiener expansion of the local time at the fixed point for the solution of the stochastic differential equation in the multidimensional case (when standard local time does not exist even for Brownian motion). We show that under some conditions the renormalized local time exists in the functional space defined by the L2-norm of the action of some smoothing operator.

Suggested Citation

  • Rudenko, Alexey, 2012. "Some properties of the Itô–Wiener expansion of the solution of a stochastic differential equation and local times," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2454-2479.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2454-2479
    DOI: 10.1016/j.spa.2012.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000427
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imkeller, Peter & Perez-Abreu, Victor & Vives, Josep, 1995. "Chaos expansions of double intersection local time of Brownian motion in and renormalization," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2454-2479. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.