IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On the 3-D stochastic magnetohydrodynamic-α model

Listed author(s):
  • Deugoué, Gabriel
  • Razafimandimby, Paul André
  • Sango, Mamadou
Registered author(s):

    We consider the stochastic three dimensional magnetohydrodynamic-α model (MHD-α) which arises in the modeling of turbulent flows of fluids and magnetofluids. We introduce a suitable notion of weak martingale solution and prove its existence. We also discuss the relation of the stochastic 3D MHD-α model to the stochastic 3D magnetohydrodynamic equations by proving a convergence theorem, that is, as the length scale α tends to zero, a subsequence of weak martingale solutions of the stochastic 3D MHD-α model converges to a certain weak martingale solution of the stochastic 3D magnetohydrodynamic equations. Finally, we prove the existence and uniqueness of the probabilistic strong solution of the 3D MHD-α under strong assumptions on the external forces.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 122 (2012)
    Issue (Month): 5 ()
    Pages: 2211-2248

    in new window

    Handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2211-2248
    DOI: 10.1016/
    Contact details of provider: Web page:

    Order Information: Postal: http://

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2211-2248. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.