IDEAS home Printed from
   My bibliography  Save this article

Properties of the limit shape for some last-passage growth models in random environments


  • Lin, Hao
  • Seppäläinen, Timo


We study directed last-passage percolation on the planar square lattice whose weights have general distributions, or equivalently, queues in series with general service distributions. Each row of the last-passage model has its own randomly chosen weight distribution. We investigate the limiting time constant close to the boundary of the quadrant. Close to the y-axis, where the number of random distributions averaged over stays large, the limiting time constant takes the same universal form as in the homogeneous model. But close to the x-axis we see the effect of the tail of the distribution of the random environment.

Suggested Citation

  • Lin, Hao & Seppäläinen, Timo, 2012. "Properties of the limit shape for some last-passage growth models in random environments," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 498-521.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:498-521
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Andjel, E. D. & Ferrari, P. A. & Guiol, H. & Landim *, C., 2000. "Convergence to the maximal invariant measure for a zero-range process with random rates," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 67-81, November.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:498-521. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.