IDEAS home Printed from
   My bibliography  Save this article

The scaling limit of Poisson-driven order statistics with applications in geometric probability


  • Schulte, Matthias
  • Thäle, Christoph


Let ηt be a Poisson point process of intensity t≥1 on some state space Y and let f be a non-negative symmetric function on Yk for some k≥1. Applying f to all k-tuples of distinct points of ηt generates a point process ξt on the positive real half-axis. The scaling limit of ξt as t tends to infinity is shown to be a Poisson point process with explicitly known intensity measure. From this, a limit theorem for the m-th smallest point of ξt is concluded. This is strengthened by providing a rate of convergence. The technical background includes Wiener–Itô chaos decompositions and the Malliavin calculus of variations on the Poisson space as well as the Chen–Stein method for Poisson approximation. The general result is accompanied by a number of examples from geometric probability and stochastic geometry, such as k-flats, random polytopes, random geometric graphs and random simplices. They are obtained by combining the general limit theorem with tools from convex and integral geometry.

Suggested Citation

  • Schulte, Matthias & Thäle, Christoph, 2012. "The scaling limit of Poisson-driven order statistics with applications in geometric probability," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 4096-4120.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4096-4120
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Barbour, A. D. & Brown, T. C., 1992. "Stein's method and point process approximation," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 9-31, November.
    2. Henze, Norbert & Klein, Timo, 1996. "The Limit Distribution of the Largest Interpoint Distance from a Symmetric Kotz Sample," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 228-239, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lachièze-Rey, Raphaël & Peccati, Giovanni, 2013. "Fine Gaussian fluctuations on the Poisson space II: Rescaled kernels, marked processes and geometric U-statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4186-4218.
    2. Chenavier, Nicolas, 2014. "A general study of extremes of stationary tessellations with examples," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2917-2953.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4096-4120. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.