IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Quasi-stationary distributions and Yaglom limits of self-similar Markov processes

  • Haas, Bénédicte
  • Rivero, Víctor
Registered author(s):

    We discuss the existence and characterization of quasi-stationary distributions and Yaglom limits of self-similar Markov processes that reach 0 in finite time. By Yaglom limit, we mean the existence of a deterministic function g and a non-trivial probability measure ν such that the process rescaled by g and conditioned on non-extinction converges in distribution towards ν. We will see that a Yaglom limit exists if and only if the extinction time at 0 of the process is in the domain of attraction of an extreme law and we will then treat separately three cases, according to whether the extinction time is in the domain of attraction of a Gumbel, Weibull or Fréchet law. In each of these cases, necessary and sufficient conditions on the parameters of the underlying Lévy process are given for the extinction time to be in the required domain of attraction. The limit of the process conditioned to be positive is then characterized by a multiplicative equation which is connected to a factorization of the exponential distribution in the Gumbel case, a factorization of a Beta distribution in the Weibull case and a factorization of a Pareto distribution in the Fréchet case.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001731
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 122 (2012)
    Issue (Month): 12 ()
    Pages: 4054-4095

    as
    in new window

    Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4054-4095
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

    Order Information: Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Geluk, J. L., 1996. "On the domain of attraction of exp(-exp(-x))," Statistics & Probability Letters, Elsevier, vol. 31(2), pages 91-95, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4054-4095. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.