IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Coalescence in the recent past in rapidly growing populations

  • Athreya, K.B.
Registered author(s):

    In a rapidly growing population one expects that two individuals chosen at random from the nth generation are unlikely to be closely related if n is large. In this paper it is shown that for a broad class of rapidly growing populations this is not the case. For a Galton–Watson branching process with an offspring distribution {pj} such that p0=0 and ψ(x)=∑jpjI{j≥x} is asymptotic to x−αL(x) as x→∞ where L(⋅) is slowly varying at ∞ and 0<α<1 (and hence the mean m=∑jpj=∞) it is shown that if Xn is the generation number of the coalescence of the lines of descent backwards in time of two randomly chosen individuals from the nth generation then n−Xn converges in distribution to a proper distribution supported by N={1,2,3,…}. That is, in such a rapidly growing population coalescence occurs in the recent past rather than the remote past. We do show that if the offspring mean m satisfies 1

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001433
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 122 (2012)
    Issue (Month): 11 ()
    Pages: 3757-3766

    as
    in new window

    Handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3757-3766
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

    Order Information: Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Grey, D. R., 1979. "On regular branching processes with infinite mean," Stochastic Processes and their Applications, Elsevier, vol. 8(3), pages 257-267, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3757-3766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.